LLnextgen user manual
For version 0.3.1

G.P. Halkesllnextgen@ghalkes.nl>

22-07-2006

Contents

Contents 1

1 Introduction 2
1.1 Extent of reimplementation

2 Specifying grammars 3
2.1 BaSiCSYNAX e e e e 3
2.2 Definingtokens e e e 5
2.3 Conflicts 5

3 Interfaces 8
3.1 Nameprefixes e e e 8
3.2 Generatedfiles e 8
3.3 Lexicalanalyser e e 8
3.4 Parserroutine e e e 9

3.4.1 Multiple parsersinonegrammaro i 9
3.5 Errorhandling e e 9
4 Other features 11
4.1 Includingfiles e 11
411 Dependencies e e e e 11
4.2 Specifyingoptionsinthegrammar e 11
4.3 LLabort e 11
4.4 Reentrant Parsers i e e e e 12
45 Thread-safe parsers e 13
45.1 Parserroutines e 13
45.2 LLmessage andlexicalanalyser, 13
453 LLabort 13
4.6 Symboltables e e 13
4.7 Automatic tokendeclarations 14

5 Examples 15
5.1 Calculator e e 15
5.2 Compiler 18
5.3 Thread-safeparser e 18

6 Contact 20
6.1 Reportingbugs L e 20
6.2 Letmeknow e 20

Bibliography 21

A Manual page 22

Chapter 1

Introduction

LLnextgen is a (partial) reimplementation of the LLgen EL) [2] parser generator created by D. Grune
and C.J.H. Jacobsvhich is part of the Amsterdam Compiler Kit (ACK). As suchgitates C source-code
for a text parsing engine from a description of the grammaée parsers created use the LL(1) paradigm,
with several extensions to allow for some ambiguities tods®ived without rewriting the grammar.

This manual is not an introduction to parsers or parsinggignas. There are many books on parsing
and compiler construction, for example [1].

Throughout this manual | have indicated where the behawwbut nextgen differs from LLgen with
the /A symbol in the margin. Also, the manual page provides an @eeref the differences in behaviour
of LLnextgen and LLgen.

1.1 Extent of reimplementation

LLnextgen implements the complete feature set of LLgen jixite the extended user error-handling with
the%onerror directive and the non-correcting error-recovery. Theddad error-recovery mechanism is
implemented.

The reason for not implementing t8éonerror directive is because it is mostly a hook to allow
research into different error-recovery mechanisms. Thist very useful for the normal user of LLgen.

The non-correcting error-recovery is not implemented bseat is a lot of work and | think it is not
an improvement over the default algorithm. Although it caoduce fewer error messages, the location
of the reported error can diverge from the location whereptirser got stuck. My personal experience is
that compilers that report errors at a different place thbene the parser gets stuck can seriously hinder
interpretation of the generated error-message by the demysier.

1To add to the confusion, there exists or existed anotheranogalled LLgen, which is an LL(1) parser generator. It wasited
by Fischer and LeBlanc.

Chapter 2

Specifying grammars

2.1 Basic syntax

LLnextgen uses an EBNF-like syntax for specifying grammaksgrammar consists of rules, which in
turn consist of elements. The elements in an LLnextgen graname terminals (or tokens), non-terminals
(or rules), terms and actions. The grammar file is also theepla specify several directives as well as
providing code to be copied to the output (enclosed in bjaces

Terminals can be either a character literal, specifiedals, or an identifier. LLgen can handle the
following character escapedb’ ,\f ,\n" ,\r '\t "WV and octal character
codes, for exampla033’ . LLnextgen can also handl®’ ,"\v' ,\?" ,\" and hexadec- A
imal escape codes, for examplelB’ . These all have the same semantics as in C, except for
the hexadecimal escape codes. The hexadecimal escapeotygleiow you to specify character
literals up to OXFF.

Non-terminals are specified by identifiers. Any non-terminal used in a rhkes to appear as a rule
itself elsewhere in the grammar. As non-terminals are tadéed into C-functions, they can have
arguments. The arguments can be passed in the normal ways,they writing a C-expression
enclosed in parentheses.

Terms are one or more elements enclosefl Bnd] . A| can be used to specify an alternation (or choice)
between several alternatives.

Actions are pieces of C-code enclosed in braces. To determine thefé¢nel C-code, LLnextgen tries to
match the braces in the code and find the brace matching timéngparace of the action. This means
that there is one restriction on the C-code: the number ofiogedbraces must match the number of
closing braces. Normally, C-code will satisfy this consttabut if you are usingtdefine s which
contain braces LLnextgen’s efforts to find matching braceg be thwarted.

A further restriction is that comments should not contaie IEontinuations (a backslash followed by
a newline) within the starting and ending delimitef's (*/ and//). As this is something human
programmers don't usually do, this is not a big restriction.

Terminals, non-terminals and terms can all be followed byptional repetition specification. The
following list summarises the possible repetition spersfie

e A number, specifying the exact number of times the elemesitdappear.
e A +, specifying the element has to appear 1 or more times.
e A* specifying the element may appear O or more times.

e +or* followed by a number indicating the maximum number or tinfessé¢lement may appear.

e A ?, specifying the element may appear once. This is a shortioarid1 .

The LLnextgen grammar can be specified in the LLnextgen gyfilae example below is a simplified
extract from the actual grammar file used to build LLnextg@hcourse, in the actual grammar the rules
do have parameters and actions have been specified.

grammar : declaration * ;

declaration :
C_DECL [/* Top level C-code */

START IDENTIFIER ’, IDENTIFIER }
[* Other declarations omitted for brevity */

rule

rule :
identifier
C_EXPR ? [* Parameters */
C_DECL ? [* Local variable declarations */

productions

productions :
simpleproduction [’|' simpleproduction] *

simpleproduction :

[
I
|

DEFAULT
IF C_EXPR
/* Other directives omitted for brevity */

element
repeats

] *

element :
C_DECL [/* Action code */
|

LITERAL

IDENTIFIER /* Can be both a terminal or a non-terminal */
C_EXPR ?

1[!
[* Optional directives omitted for brevity */
productions

T

repeats :

/* No operator */

NUMBER ?

NUMBER

Note the use of C-style comments. LLnextgen accepts bottyl€-somments and C++-style com- A
ments anywhere in the grammar. All capitalised words araitals, although this is simply a convention.
The C_DECLtoken represents a number of C declarations and statereentesed in braces. THREXPR
token represents either a parameter list, asili@ andelement , or an expression to be evaluated dur-
ing parsing to resolve a conflict (as simpleproduction). In both cases, th€_ EXPRincludes the
enclosing parentheses.

2.2 Defining tokens

To use a token in the parser, it first has to be defined. To do dis can use thé&token directive,
although as an extension to LLgen, one can also%isdel for this (see Section 4.6). Multiple tokens A\
can be declared by a singlétoken directive, for example:

%token IDENTIFIER, NUMBER, C _EXPR;

For quick developmentin the early stages, one can also ase-tioken—pattern option which automatically /\
defines all the unknown identifiers that match the given patis tokens (see Section 4.7).

2.3 Conflicts

In LL(1) grammars, two kinds of conflicts can occur: FIRSREIT conflicts and FIRST/FOLLOW con-
flicts. LLgen names these alternation conflicts and repetitionflicts respectively (although repetition
conflicts also cover cases that involve repetition opesat@n alternation conflict occurs when two alter-
natives of a rule or a term can start with the same terminalegitition conflict can occur in two cases:
when a term or rule has an empty alternative, and can be fetldwy a token that is also the start of one
of the other alternatives, or when a repeating element wiiriable repetition count (usingor *) can be
followed by a token that is also the start of (an alternatiijyele element.

One way to deal with conflicts is rewriting the grammar rulest most cases this is the most practical
way. However, in some cases it is possible to write an exjmesisat determines which way to solve the
conflict at run time. This is what the extended part of ELL{E&)pbout. Using the directiviif at the
start of an alternative with a conflict, followed by a C-exgsien in parentheses, an alternation conflict
can be resolved. For the common expressions (1) and (0),ithetides%prefer and%avoid have
been defined. Using these instead@if (1) and%if (0) will produce faster code. Note that these
directives cannot be used on the last conflicting altereatt/there always has to be a fall-back alternative
for each conflicting token.

An example of an alternation conflict is the following grantma

. Ystart parser, starting_rule;
. %token A;

1

2

3:

4: starting_rule :
5: A

6: |

7: rule

9:

10: rule :
11: a’?
12: A
13: ;

If LLnextgen is run on the preceding grammar, with the ——asgoption, it will output the following:

<stdin>:6: error: Alternation conflict with alternative a t <stdin>:5 in
starting_rule
Trace for the conflicting tokens from alternative on line 5:
A [line 5]
Trace for the conflicting tokens from alternative on line 6:
rule [line 7] ->
A [line 12]

The trace of the first alternative is straightforward. It@fies that on line 10 the tokeA is part of
the first set of the alternative. The trace for the secondradteve specifies that the conflicting token is
in rule2 which is called from line 12. LLnextgen then goes on to shovesehinrule2 the offending
token is mentioned, in this case on line 6.

For repetition conflicts one can use #tavhile directive at the start of a repeating term, again followed
by a C-expression in parentheses. If the expression eealt@isomething other than zero, the repetition
will be continued. If the expression evaluates to zero,ipgr&ill continue with the grammar following
the repetitiof.

In the example below there is a repetition conflict on line 15nextgen cannot decide whether to
match the optiongk’ at line 15, as the ruleaner may also be followed by &' (through the call to
outer online 4).

1: %start parser, outest;

2:

3. outest :
4 [outer] +
5: a’
6. .

7:

8: outer :

9: 'c’
10: inner
11: ;

12:

13: inner :
14: o’
15: 'a’?
16: ;

If LLnextgen is run on the preceding grammar, with the ——aseoption, it will output the following:

<stdin>:15: error: Repetition conflict in inner
Trace for the conflicting tokens from the first set:
‘a’ [line 15]
Trace for the conflicting tokens from the follow set:
<- inner from outer [line 10]
<- outer from outest [line 4]
'‘a’ [line 5]

In the trace, the left arrows<{) indicate that the follow set of the rule being traced (thstfiule
mentioned) is at least partly determined by a call to that atlthe specified location. In this case, the

1Due to a bug in LLger%while alternatives could not be used-irrepetitions. LLnextgen on the other hand does allow these.

follow set of the ruldnner is determined by a call in ruleuter on line 10. As this is the last part of
outer , the follow set ofinner is further determined by the location wheyeter is called. The next
line of the trace therefore specifies that there are tokeimigr 's follow set which come from the call
to outer on line 4. This call taoouter can be followed by thé&a’ on line 5, which is the source of the
conflict.

An example of using &while directive to solve this conflict would be the following: ihfexample,
the’a’ online 15 must only be matched the first 10 times, one couldghhe rulenner into:

inner { static int count = 0; } :
!b!

%while (++count <= 10)
‘a

17

Note however, that using thetatic variable this way means that you can only call the parser.once
Using a global variable which is reset at some point willalfor calling the parser multiple times.

To aid expression-writing, th&first directive can be used to declare macro’s that evaluate to one
if a rule can start with a given token. For example, decla®isfgst fset, rule; declares a macro
namedfset that takes a single argument, the number of a token. If thatrt@an start the rulaule
fset evaluates to one.

Chapter 3

Interfaces

This chapter details the interfaces expected and provigéldebparsers generated by LLnextgen.

3.1 Name prefixes

All symbols (functions and variables) generated by LLnextgre by default prefixed with LL. To facilitate
multiple parsers in one program, LLnextgen can be instdicieise a different prefix for all symbols with
external linkage. This is accomplished us#dgfine s, so that within the output C file the symbols can
still be used with theit L prefix. To instruct LLnextgen to use a different prefix, uSéprefix directive
like for exampledoprefix PF;

NOTE: it is inadvisable to create symbols using the LL prefix, oy prefix specified wittoprefix
Doing so can cause name-clashes at both compile and link time

3.2 Generated files

LLnextgen generates two files by default: a .c file and a .hTitee base name of the files is the name of the A\
first input file with an optional trailing .g extension remaoyer the name specified by the ——base—name
option. This is different from LLgen, which generates thfites by default: a .c file for each input file, a

file named Lpars.c and a file named Lpars.h. %prefix directive has been specified in the grammar,
the latter two files would have the prefix in place of the cadpitdhe LLgen behaviour can be obtained by
specifying the ——llgen—output—style option.

The header file contair&lefine d constants for all the tokens defined throdgtoken and%label
directives, as well as for the symbdEOFILE, LL_MAXTOKNQ.L_MISSINGEOFandLL_ DELETE A
The tokern#define s are enclosed in a conditional compilation block. If the bpil.L_NOTOKEN®
#defined , the tokens will not be available.

NOTE: the guard symbol is always naméd _NOTOKENS$egardless of angoprefix directives
and the symboleL _MAXTOKNQL _MISSINGEOFandLL _DELETEare excluded from the conditional
compilation.

Finally, the header file also contains prototypes for thesgaitself, and if applicable also for A
LLreissue (see Section 3.3) arld_abort (see Section 4.3).

3.3 Lexical analyser

LLnextgen needs to be provided with a lexical-analyserin@utThe lexical analyser is expected to return
anint ; the token number. The token numbers 1 through 255 have lesenved for character literals.
This includes the standard ASCII character set. Token nul& normally reserved for signalling the
End-Of-File condition, but using the option —no—eof-zés token can be used for other purposes. The/\
token number-1 is also reserved for signalling the End-Of-File conditias,is the#define 'd constant

EOFILE in the generated header file. The tokens defined thréoimgiken and%label directives also
have constant$édefined for them in the header file.

The name of the lexical-analyser routine defaults to yytexfacilitate easy integration with (f)lex
generated analysers. To specify a different name for thiire, supply &olexical directive in your
grammar. For exampléplexical scanner; would indicate that the analyser to be used is named
scanner .

LLnextgen requires lexical analysers to return the samertateturned previously after it inserts a
token during error recovery. Most lexical analysers do mpip®rt this kind of unput action, so a wrap-
per has to be written for the lexical analysers. As this uguahds to the same code for each parser,
LLnextgen can generate a default wrapper by specifying tyererate—lexer—wrapper. This default wrap- A\
per can also be dumped on standard output by using —dungs—lesapper. Further more, unless the
option ——no-llreissue is specified, the variableeissue is set to the token that needs to be reissued,
or LL_NEWTOKENIf no reissue is requested. The lexer wrapper is expectedgetlcLreissue to
LL_NEWTOKENafter reissuing the previous token.

NOTE: versions of LLnextgen before 0.3.0 use a different andnmgatible convention for the value
of LLreissue . To distinguish between these versions, use the C miact ERSION (see below).
Incompatible older versions of LLnextgen do not define thém.

The result of the last call to the lexical analyser is stordd isymb. This value can be used #while
and%if directives. Note that the value will only be valid in actiguiaced directly after the token to be
matched, and in LLmessage (see Section 3.5).

To distinguish different interface versions, LLnextgerines the C macrd.L _'VERSIONwhich is
affected by%prefix . It has been defined since version 0.3.0. The value of theariadhe version
number encoded as a hexadecimal number, with two digitsgrsion number position. The number for
version 0.3.0 is therefore 0x000300.

3.4 Parser routine

The generated parser must be given a name and a starting ithl¢he%start directive. The syntax
is %start parser_name, starting.rule;. The generated parser will then have the following
prototype:

void par ser _nanme(void);

However, when the option ——abort is used, the return typegdmtoint (see Section 4.3 for details).
The prototype will be added to the header file, unless th@opti-no—prototypes—header is used.

3.4.1 Multiple parsers in one grammar

It is possible to specify multiple parser in the same gramifiter This can be useful if the parsers have
many common rules, or share a single lexical analyser. Thasers will share common data structures.
If the parsers are not called from one another this causesalgm. For the case where the parser do
call one another, either the option ——reentrant or the aptiethread-safe needs to be specified (See also
Section 4.4 and Section 4.5). LLnextgen will issue a warifiggu don’t specify one of these option but do
use multiple parsers in one grammar. To suppress this wgusiea ——suppress-warnings=multiple-parser.

3.5 Error handling

When the generated parser encounters an error in the inprtiési to find a sequence of token deletions
and insertions such that the token encountered can be ugedtas the grammar. To decide which tokens

to discard, the parser keeps track of the set of tokens whiltalways be matched by continuing after the
error correction. To determine this set, LLnextgen usesafled default choices for each alternation. A
default choice is the alternative that is chosen when triorrgcover from an error. By default, it is the first /\
alternative that needs the minimum number of tokens to cetepT his is a slight deviation from the LLgen

way of choosing a default choice, as it also takes the contplekthe alternatives into account. There
is also a difference in the handling of tB&avoid directive. LLnextgen deems all alternatives marked
with %avoid equal and simply chooses the first (if they are the shortestaltives that is), while LLgen
chooses the last.

These differences are not very large, and can be circumyéytsepecifying @odefault directive on
the alternative of choice. It should be noted thatddefault directive is also an effective means of error
recovery in the actions. It is usually easiest to write amactvithout regard to the validity of the token
text, especially when the token text is expected to be sangedther than a keyword or operator. To direct
the parser to use a different action to handle these singtane might use the following construction:

[
I
|
]

For terms with a variable repetition count (i.e. terms fakal by+, * or ?), the default is to assume a
minimal number of repetitions. If however it is desirablentake the parser to go into the repetition if one
of the tokens of the default choice within the repetitioneqms, &6persistent directive can be added
at the start of the term.

The parser calls the routine LLmessage, which has to beged\iy the parser writer, to indicate either
a deletion or an insertion of a token. LLmessage takesmneparameter, which can have the one of the
following values:

IDENTIFIER { /* add to symbol table */ }
NUMBER { I* extract value from text */ }

%default MISSING_EXPRESSION /* No action */

LL_DELETE to indicate that the parser is about to discard the tokentakén numbetLsymb.

LL_M SSI NGEOF to indicate that the parser expected the end of input, anbdstdo discard the token
with token numbet.Lsymb.

Any other value to indicate the parser is about to insert a token with thatlmembefore the token with
token numbetLsymb.

Note that LLgen uses the fixed values O fot DELETE and —1 for LL_MISSINGEOF. Because A\
LLnextgen uses 0 as a regular token number when the optioo—eaf-zero is used, the value 0 would
have two meanings. Therefore the use of the hard coded vaked—1 is deprecated, and all new parsers
should usd.L_DELETEandLL _MISSINGEOFinstead.

To make development quicker, a default LLmessage routime bz generated using the option A\
——generate—llmessage. This routine can also be dumpe@ndast output by specifying the option
——dump-limessage on the command line. The default versiartlten be used as a starting point for
a more elaborate message printing routine.

10

Chapter 4

Other features

This chapter describes several features LLnextgen preagier the standard LLgen feature set. These/\
have been created to make development easier.

4.1 Including files

LLnextgen has a file inclusion mechanism, similar to#irclude mechanism in C. To include another
grammar file use%include " fil ename"; . The filename may include C-style escaped characters.
LLnextgen tries to prevent you from including files recuedyy and will abort with an error if it detects
this.

4.1.1 Dependencies

The include mechanism also introduces a dependency situdthis requires proper handling in Makefiles.
To help developers, LLnextgen can provide dependencynmdition for its input files. Using the option
——depend will print a line with the names of the files that Wélcreated, followed by a semicolon, followed
by all the input files that will be used to create the outpusfi®everal modifiers exist to change the output
(see Appendix A).

A problem that already existed with LLgen is that to find outiethheader files the generated code
needs, one needs to generate the code. However, for depgrglmeration it is undesirable to already
generate the parser code. Therefore LLnextgen adds amdptisimply dump all the top-level C-code
(——depend-cpp). Piping this through the C preprocessawalilependency generation to proceed without
generating the actual parser. For example:

LLnextgen --depend-cpp grammar.g | gcc -E -M -MM -MT ’gramma ro -

can be used to generate dependency informatiogrimnmar.o , using gcc.

4.2 Specifying options in the grammar
As options for LLnextgen can be specific to a grammar, it isdalgo allow grammar writers to specify the
options in the grammar as well. This can be done withaptions directive. Theboptions directive

must be followed by a double quoted string with options. QObplyg options can be specified and the
leading dashes must be omitted. The string is processed$tyl€escaped characters.

4.3 LLabort

It is not always desirable to continue parsing after an erffir accommodate this, LLnextgen can be
instructed to generate a routine called LLabort. This rmikias to be passed one integer with a value other

11

than 0. As mentioned in Section 3.4, this option changes tbtype of the parser routine such that it
returns arint . The value returned is 0O if the parser completed normallg,the value passed to LLabort
otherwise.

4.4 Reentrant parsers

The parsers generated are not reentrant by default, cpntragen parsers. To make the parsers reen-/\
trant NOTE: not thread-safe!), use the —reentrant option. This makesssible for the parser to call
itself. This is different from running two parsers simuksusly in different threads. See Section 4.5 for
information on thread-safe parsers.

Calling the parser will change the state of the lexical aseywhich the currently running parser relies
on. Itis therefore important to use a reentrant lexical gs&l as well, when using reentrant parsers. Flex
provides these from versions after 2.5.4a (usitgption reentrant or ——reentrant). Older versions
of flex do provide a way to switch between buffers, but thishodtfails to save the contentsygfext
and is therefore unsuitable for most cases. It is possibsave yytext yourself and thereby still use the
buffer switching mechanism flex provides.

Reentrant parsers are a way to implement file inclusion wipegific tokens are expected after the
include command. For example, in LLnextgen a semicolors(xipected after the string containing the
file name. It is of course also possible to incorporate thegeition of include statements completely in
the lexical analyser. However, that would cause a substartiount of work if for example comments are
to be allowed between the tokens as well. Below is the (siied)i code from the LLnextgen grammar:

INCLUDE

[
STRING

{ token = newToken(); }

%default
MISSING_STRING /* token is NULL by default */

if (token != NULL) {
if (openinclude(token))
parser();
freeToken(token);
}
}

When the end of an include file is reached, the lexical analyseds to return the end-of-file token and
switch back to the previous file. However, returning the efifile token may cause error messages from
the parser. To provide proper indication of where (what imehich file) the error is, the line number and
file name information should not be reset until the next tokeio be retrieved from the lexical analyser.
When using flex this can be achieved in the following way:

int switchBack = 0;
int yywrap(void) {
;WitchBack = 1;
}
int lexerWrapper(void) {
if (LLreissue == LL_NEW_TOKEN) {

if (switchBack) {
/* switch back to previous lexer state */

12

}

} else {

}
}

As you can see, this requires a hand crafted lexer wrapper.

4.5 Thread-safe parsers

LLnextgen can also generate thread-safe parsers. Thigjisree when multiple instances of the same
parser are to run in parallel. To make LLnextgen generateemthsafe parser, the option ——thread-safe
needs to be specified. This will define the mabtta THREADSAFE (which is affected byoprefix)

and change the interface to several functions. The sedbielosv detail the changes to the interface with
respect to the standard interface. For an example, see &tapt

45.1 Parserroutines

Parser routines for thread-safe parsers take an argumbistafgument is meant for passing data to and
from the parser. The argument passed is available to altitmecgenerated as part of the parser through
the macrd_Ldata . By default this argument is of typeid * . To change the type of the argument, the
%datatype directive can be used. Its syntax is as follows:

%datatype "type" [, "header file"];

The first argument is the type of the argument to the parstirelfype is not a standard C type, inclusion of
a header file with the type declaration is required. The megiieader file can be specified with the second
argument. By default the header file is assumed to be a loealdndile. However, if the string starts with
a'<’, the header is assumed to be a system header fllédétatype is used in a non-thread-safe parser,
LLnextgen will issue a warning which can be suppressed wittuppress—warnings=datatype.

4.5.2 LLmessage and lexical analyser

ThelLLmessage function, as well the lexical analyser both have an extraiment named.Lthis . It
contains the parser state and is of tgbeict LLthis * . It also contains a member namielddata _
which contains the user data. The mattalata expands td_Lthis->LLdata _to ease access. Itis
intended that the user data contained in this member alsaiosrthe state for the lexical analyser. Note
that the name of the type and the name of the macro are chaggedbprefix directive, but the name of
the argument is not.

For LLmessage, the new signature is:

void LLmessage(struct LLthis *LLthis, int token);

45.3 LLabort
If the LLabort function is enabled with the ——abort option, its signatsrehanged into:

void LLabort(struct LLthis *LLthis, int retval);

4.6 Symbol tables

When printing error messages, it is often desirable to hasteiag associated with a token number. To
accommodate this, LLnextgen can create a symbol tabled isexoption ——generate—symbol—table).

By default all tokens that have been created wittoken have as associated string the token name
itself. For example, ifotoken IDENTIFIER; appears somewhere in the grammar, the string associated

13

with the token number for IDENTIFIER would be "IDENTIFIERThe default for the character literals
is the table defined in the LLnextgen source code. For theackens up to and including space and for
character 127, it is the name of the control character eadloe<>. For characters between space (32) and
127 it is the character itself enclosed in single quotgsdnd for all other characters it is the hexadecimal
C-style escape code enclosed in single quotes.

All these defaults can be overridden by #téabel directive. Its syntax is:

%label token, string;

t oken can be both a character literal or an token identifier. Stisrautput unprocessed to the output file.
A token identifier does not have to be declared by%oken directive, unless the option
——no-allow—label-create has been specified.

To use the symbol table, use the function LLgetSymbol. iesak token number as only argument, and
returns a pointer to a string constant, or NULL if the tokemiuer is invalid.

4.7 Automatic token declarations

Note: the following options are not always available. Ituiggs the POSIX regex API. If the POSIX regex
APl is not available on your platform, or the LLnextgen binaras compiled without support for the API,
you will not be able to use this option.

In the early stages of development it can be a nuisance to teaglefine all the tokens used in the
grammar, simply to test for conflicts. To mitigate this pehl LLnextgen provides the —token—pattern
option. The argumentto the ——token—pattern option is aaegupression that is used to test if an unknown
identifier is meant to be a token, or maybe is a misspelledraiee.

When the grammar has stabilised, the ——dump—tokens canebetagenerate a list of token decla-
rations for the identified tokens. The default is to outpuirgle %token directive which includes all
token definitions. The ——dump-tokens takes a single odtamgament which modifies the way the dec-
larations are printed. Theeparatemodifier makes LLnextgen output a separéitoken directive for
each identifier, while théabelsmodifier makes LLnextgen outputtalabel directive for each identifier.
The text for the label is the name of the identifier. If fabelsmodifier is used in combination with the
——lowercase—symbols option, the text for the label willteémonly lowercase characters.

14

Chapter 5

Examples

This chapter contains two examples. The first is a very sirogleulator, which shows basic LLnextgen
use and a sophisticated use6ivhile . The second is a front-end of a very simple compiler.

5.1 Calculator

The file below shows a very simple calculator. It uses onlgget numbers, and can adg,(subtract<{),
divide (/), multiply (*), take the modulo&), and calculate powers {.

%start calculator, input;

%label NUM, "number";

%options "generate-lexer-wrapper generate-llmessage ge nerate-symbol-table";
%lexical lexer;

#include <stdio.h>
#include <ctype.h>
#include <math.h>

static int value;

enum states {
START,
NUMBER

b

int lexer(void) {
enum states state = START,;
int c;

value = 0;
while ((c = getchar()) != EOF) {
switch (state) {
case START:
if (isspace(c) && ¢ = \n’) {
[* Skip white space, except for newlines. */
continue;
} else if (isdigit(c)) {
[* Digits mean a number! */
state = NUMBER;
value = ¢ - '0’;
break;

15

[* Simply return all other characters and let the
parser error handling sort it out if necessary. */

return c;

case NUMBER:

/* Read all digits and push back the non-digit, so
we can reread that the next time. */

if (lisdigit(c)) {
ungetc(c, stdin);

return NUM;
}
value = value * 10 + (c - '0");
break;

}
}
/* We're done. */
return EOFILE;

}

/* Simple main routine to fire up the calculator. */
int main(int argc, char *argv[]) {

calculator();

return O;

}

/* Define the operator priorities. A table would have been po ssible
as well, but this is just as clear and requires less memory. */
int getPriority(int operator) {
switch(operator) {
case -
case '+
return O;
case I
case ‘%’
return 1;
case *:
return 2;
case "
return 3;
}
[* This should never happen, but we have to return something.
return -1;

}
}

input { int result; } :
\n' * /* Empty lines should be skipped. */
[

expression(&result, 0)

{

}
\n' + /* Empty lines should be skipped. */

] *

printf("Answer: %d\n", result);

1

expression(int *result, int priority) { int intermediate; }
[* Expressions are factors (numbers, negated expressions a nd

16

expressions between parentheses) followed by operators,
followed by expressions with higher priority. */
factor(result)
[
%while (getPriority(LLsymb) >= priority)
I* The %while directive says to keep accumulating operators
as long as they have equal or higher priority. */

expression(&intermediate, getPriority(-") + 1)

[* The getPriority() + 1 means that ’-’ is left associative.
If it needs to be right associative, this needs to be
getPriority().
Also note the explicit use of -’ instead of LLsymb. This
is necessary as LLsymb has changed after matching '-’. */

{
*result -= intermediate;
}
I
"
expression(&intermediate, getPriority('+) + 1)
{
*result += intermediate;
}

1%

expression(&intermediate, getPriority('*’) + 1)

{
*result *= intermediate;
}
I
Y
expression(&intermediate, getPriority('/’) + 1)
{
*result /= intermediate;
}

04
expression(&intermediate, getPriority('%’) + 1)

{
}

*result %= intermediate;

expression(&intermediate, getPriority(™) + 1)

{
*result = (int) pow(*result, intermediate);
}
] * /* Note: an expression can also be just a number or parenthe sised

expression, so there can also be 0 operators. Hence the *. */

1

factor(int *result) :
1(!
expression(result, 0)

'y

-' expression(result, 1)

17

*result = - *result;
}
I
NUM
{
*result = value;
}

The main thing to note is the use @while to achieve operator precedence. Each time an operator is
matchedgexpression is called recursively to match a part of the input contairomdy operators with
greater precedence. Aftexpression is done with matching the subexpression, more operators are

matched at the current level or higher. This can be used irpgers as well.

5.2 Compiler

Todo:

e simple compiler

5.3 Thread-safe parser

The parser below does not do anything particularly usefuis simply meant to show the interface for
thread-safe parsers. The parser uses the following he&aler fi

#ifndef DATA_H
#define DATA_H

struct data {

char *string;

int index, dontStop;
b

#endif
And this is the parser:

%options "thread-safe abort generate-lexer-wrapper gene
%datatype "struct data *", "data.h”;

%start parser, rule;

%lexical lexer;

rule :

A+

{

#include <stdio.h>
#include <stdlib.h>

int lexer(struct LLthis *LLthis) {
return LLdata->string[LLdata->index++];

}

void LLmessage(struct LLthis *LLthis, int LLtoken) {

18

rate-symbol-table";

switch (LLtoken) {
case LL_MISSINGEOF:
fprintf(stderr, "Expected %s, found %s.\n",
LLgetSymbol(EOFILE), LLgetSymbol(LLsymb));
break;
case LL_DELETE:
fprintf(stderr, "Unexpected %s.\n",
LLgetSymbol(LLsymb));
break;
default:
fprintf(stderr, "Expected %s, found %s.\n",
LLgetSymbol(LLtoken), LLgetSymbol(LLsymb));
break;

}

if (ILLdata->dontStop)
LLabort(LLthis, 1);

}

int main(int argc, char *argv[]) {
struct data data;
int i;

for (i = 1; i < argc; i++) {
data.string = argvl[i];
data.index = 0;
[* Don't stop for odd numbered arguments. */
data.dontStop = i & 1;
if (parser(&data) == 1) {
printf("Failed at argument %i\n", i);
exit(EXIT_FAILURE);
}
}
exit(EXIT_SUCCESS);

19

Chapter 6

Contact

6.1 Reporting bugs

If you think you have found a bug, please check that you areguiie latest version ofLnextgen
[http://os.ghalkes.nl/LLnextgen]. When reporting bugs, please include a minimal grammar
that demonstrates the problem. Bug reports can be satinextgen@ghalkes.nl>

6.2 Let me know

If you have suggestions for improving LLnextgen, write meesamail at<linextgen@ghalkes.nl>

If you use LLnextgen in one of your programs, please let menkridend me an e-mail at the afore-
mentioned address, preferably with a link to your project whether you would like to be mentioned on
the LLnextgen webpage.

20

Bibliography

[1] Dick Grune, Henri E. Bal, Ceriel J.H. Jacobs, and Koen @dgendoenModern Compiler Design
John Wiley & Sons, Ltd., 2000.

[2] Ceriel J. H. Jacobs. Some topics in parser generatiorchriieal Report IR-105, Department of

Computer Science, Vrije Universiteit, Amsterdam, 1998tp://www.cs.vu.nl/"ceriel/
LLgen.html

21

Appendix A

Manual page

NAME

LLnextgen — an Extended-LL(1) parser generator

SYNOPSIS

LLnextgen [OPTIONS[FILES

DESCRIPTION

LLnextgen is a (partial) reimplementation of theé.gen ELL(1) parser generator created by D. Grune and
C.J.H. Jacobs (note: this is not the same ad.ttgeen parser generator by Fischer and LeBlanc). It takes
an EBNF-like description of the grammar as input(s), andipoes a parser in C.

Input files are expected to end in .g. The output files will havweemoved and .c and .h added. If the input
file does not end in .g, the extensions .c and .h will simply deea to the name of the input file. Output
files can also be given a different base name using the optibase—name (see below).

OPTIONS

LLnextgen accepts the following options:

—c, ——Mmax—compatibility Set options required for maximum source-level compatibilihis is different
from running asLLgen, as all extensions are still allowed. LLreissue and theqtypis in the
header file are still generated. This option turns on-thigen—arg—style ——llgen—escapes—only
and——llgen—output-styleoptions.

—€, ——Warnings—as—errorsTreat Warnings as errors.

—Enum, —error—limit=num Set the maximum number of errors, befatenextgen aborts. Ifnumis set
0, the error limit is set to infinity. This is to override the@rlimit option specified in the grammar
file.

—h, —help Print out a help message, describing the options.

22

-V, ——version Print the program version and copyright information, anid ex

—v([level, ——verbose[#evel Increase (without explicit level) or set (with explicit lely the verbosity level.
LLnextgen uses this option differently thdr_gen. At level 1,LLnextgen will output traces of the
conflicts to standard error. At level 2| nextgen will also write a file named LL.output with the
rules containing conflicts. At level 8Lnextgen will include the entire grammar in LL.output.
LLgen will write the LL.output file from level 1, but cannot genegatonflict traces. It also has an
intermediate setting betweéhnextgen levels 2 and 3.

—w[warningg, ——suppress—warnings[warningg Suppress all or selected warnings. Available warnings
are: arg-separator, option-override, unbalanced-ciptedparser, eofile, unusedfidentifier>] and
datatype. The unused warning can suppress all warnings aboged tokens and non-terminals,
or can be used to suppress warnings about specific tokenseermuinals by adding a colon and a
name. For example, to suppress warning messages about R®@mgused, usewunused:FOQ

——abort Generate the LLabort function.

——base—namerame Set the base name for the output files. Normallyjextgen uses the name of the
first input file without any trailing .g as the base name. Thsian can be used to override the
default. The files created will beamec andnameh. This option cannot be used in combination
with ——llgen—output—style

——depend[=modifier§ Generate dependency information to be used byrthke(1) program. The mod-
ifiers can be used to change the make targets (tatrgetgiets>, and extra-targetsitargets-) and
the output (filexfile>). The default are to use the output names as they would beedregprunning
with the same arguments as targets, and to output to standgrdt. Using the targets modifier, the
list of targets can be specified manually. The extra-tangetsifier allows targets to be added to the
default list of targets.

——depend-cpp Dump all top-level C-code to standard out. This can be usegeterate dependency
information for the generated files by piping the output fiobmextgen through the C preprocessor
with the appropriate options.

——dump-lexer—wrapper Write the lexer wrapper function to standard output, andl exi
——dump-limessageWrite the default LLmessage function to standard outpud,exit.

——dump-tokens[=modifie] Dump %token directives for unknown identifiers that match-thtoken—
pattern pattern. The default is to generate a single %token diregtith all the unknown identifiers
separated by comma’s. This default can be overriddemabdgifier The modifierseparatgproduces
a separate %token directive for each identifier, whaleel produces a %label directive. The text
of the label will be the name of the identifier. If thebel modifier and the-—lowercase—symbols
option are both specified the label will contain only loweseaharacters.

Note: this option is not always available. It requires theSPOregex API. If the POSIX regex API
is not available on your platform, or thd_.nextgen binary was compiled without support for the
API, you will not be able to use this option.

——generate—lexer—wrapperGenerate a wrapper for the lexical analyserLAsextgen requires a lexical
analyser to return the last token returned after detectmgreor which requires inserting a token
to repair, most lexical analysers require a wrapper to accodateLLnextgen. As it is almost
identical for each grammaklLnextgen can provide one. Use—dump—lexer-wrapperto see the
code.

——generate—limessag&enerate ahl. messagéunction.LLnextgen requires programs to provide a func-
tion for informing the user about errors in the input. Whereleping a parser, it is often desirable
to have a defaultLmessageThe provided_Lmessagés very simple and should be replaced by a
more elaborate one, once the parser is beyond the firstggdtese. Use—dump—limessageo see
the code. This option automatically turns-eAgenerate—symbol—table

23

——generate—symbol-tableGenerate a symbol table. The symbol table will contain g#rifor all tokens
and character literals. By default, the symbol table coistahe token name as specified in the
grammar. To change the string, for both tokens and charkteters, use the %label directive.

——keep—dir Do not remove directory component of the input file-name wdreating the output file-name.
By default, outputs are created in the current directoryis Bption will generate the output in the
directory of the input.

——llgen—arg-styleUse semicolons as argument separators in rule heademextgen uses comma'’s by
default, as this is what ANSI C does.

——llgen—escapes—onlYnly allow the escape sequences definetlloyen in character literals. By default
LLnextgen also allows\a, \v, \?,\”, and hexadecimal constants witk.

——llgen—output—style Generate one .c output per input, and the files Lpars.c andslipanstead of one
.c and one .h file based on the name of the first input.

——Ilowercase—symbolsgConvert the token names used for generating the symbol talidever case. This
only applies to tokens for which no %label directive has bewmecified.

——no-allow—label-createDo not allow the %label directive to create new tokens. Nb#t this requires
that the token being labelled is either a character literal &octoken directive creating the named
token has preceded the %label directive.

——no-arg—countDo not check argument counts for rules. LLnextgen checkghane rule is used with
the same number of arguments as it is defined. LLnextgen alscks that any rules for which a
%start directive is specified, the number of arguments is 0.

——no—eof-zeroDo not use 0 as end-of-file toke(f)lex(1) uses 0 as the end-of-file token. Other lexical-
analyser generators may use —1, and may use 0 for somethan(ga}. the nul character).

——no-line—directives Do not generatéline directives in the output. This means all errors will be repdr
relative to the output file. By defauliinextgen generate#line directives to make the C compiler
generate errors relative to thenextgen input file.

——no-llreissue Do not generate theLreissuevariable, which is used to indicate when a token should be
reissued by the lexical analyser.

——no—prototypes—headerDo not generate prototypes for the parser and other fursiiotine header file.

——not—only—reachableDo not only analyse reachable rulés.nextgen by default does not take unreach-

able rules into account when doing conflict analysis, asthaa cause spurious conflicts. However,
if the unreachable rules will be used in the future, one médigiady want to be notified of problems
with these rulesLLgen by default does analyse unreachable rules.
Note: in the case where a rule is unreachable because thaltegative of another reachable rule
that mentions it is never chosen (because of a %avoid digcthe rule is still deemed reachable for
the analysis. The only way to avoid this behaviour is by dairgcomplete analysis twice, which is
an excessive amount of work to do for a very rare case.

——reentrant Generate a reentrant parser. By defdillipextgen generates non-reentrant parsers. A reen-
trant parser can be called from itself, but not from anothezdd. Use ——thread—safe to generate a
thread-safe parser.

Note that when multiple parsers are specified in one gramusarg multiple %start directives), and

one of these parsers calls another, either the ——reentptinhar the ——thread-safe option is also
required. If these parsers are only called when none of thersis running, the option is not neces-
sary.

Use only in combination with a reentrant lexical analyser.

24

——show-dir Show directory names of source files in error and warning agess These are usually
omitted for readability, but may sometimes be necessariyrdaing errors.

——thread—safe Generate a thread-safe parser. Thread-safe parsers aamib@arallel in different threads
of the same program. The interface of a thread-safe parskifésent from the regular (and then
reentrant) version. See the detailed manual for more detalil

——token—pattern=pattern Specify a regular expression to match with unknown idemsifigsed in the
grammar. If an unknown identifier matcheg,nextgen will generate a token declaration for the
identifier. This option is primarily implemented to aid iretffirst stages of development, to allow
for quick testing for conflicts without having to specify #ile tokens yet. A list of tokens can be
generated with the—dump—tokensoption.

Note: this option is not always available. It requires thesPOregex API. If the POSIX regex API
is not available on your platform, or tHd_nextgen binary was compiled without support for the
API, you will not be able to use this option.

By runningLLnextgen using the namé&Lgen, LLnextgen goes intoLLgen-mode. This is implemented
by turning off all default extra functionality lik&Lreissue and disallowing all extensions to théd.gen
language. When running &&gen, LLnextgen accepts the following options froirLgen:

—a Ignored.LLnextgen only generates ANSI C.

—hnum Ignored.LLnextgen leaves optimisation of jump tables entirely up to the C—cibenp

—j[num] Ignored.LLnextgen leaves optimisation of jump tables entirely up to the C—citenp

—I[num] Ignored.LLnextgen leaves optimisation of jump tables entirely up to the C—cibenp

—v Increase the verbosity level. See the description oftheption above for details.

—w Suppress all warnings.

—x Ignored.LLnextgen will only generate token sets in LL.output. The extensiverereporting mech-

anisms inLLnextgen make this feature obsolete.

LLnextgen cannot create parsers with non-correcting error-recovidrgrefore, using then or —soptions
will causelLLnextgen to print an error message and exit.

COMPATIBILITY WITH LLGEN

At this time the basid.Lgen functionality is implemented. This includes everythingagfrom the ex-
tended user error-handling with the %onerror directivettiechon-correcting error-recovery.

Although I've tried to copy the behaviour &L.gen accurately, | have implemented some aspects slightly
differently. The following is a list of the differences in lhaviour betweehlLgen andLLnextgen:

e LLgen generated both K&R style C code and ANSI C collenextgen only supports generation
of ANSI C code.

e There is a minor difference in the determination of the diéfghoices.LLnextgen simply chooses
the first production with the shortest possible terminabjpiciion, whileLLgen also takes the com-
plexity in terms of non-terminals and terms into account.efehis also a minor difference when
there is more than one shortest alternative and some of tremarked with %avoid. Both differ-
ences are not very important as the user can specify whietnalive should be the default, thereby
circumventing the differences in the algorithms.

25

e The default behaviour of generating one output C file pertigma Lpars.c and Lpars.h has been
changed in favour of generating one .c file and one .h file. &tiemale given for creating multiple
output files in the first place was that it would reduce the ciatipn time for the generated parser.
As computation power has become much more abundant thisréet no longer necessary, and
the difficult interaction with the make program makes it wsidable. The_Lgen behaviour is still
supported through a command-line switch.

e in LLgen one could have a parser and a %first macro with the same ridmextgen forbids this,
as it leads to name collisions in the new file naming schemethéooldLLgen file naming scheme
it could also easily lead to name collisions, although theyld be circumvented by not mentioning
the parser in any of the C code in the .g files.

e LLgen names the labels it generatesd,.where X is a numbel.Lnextgen names these LIX.

e LLgen parsers are always reentrant. As this feature is not usgdofem, LLnextgen parsers are
non-reentrant unless the optierreentrantis used.

Furthermorel.Lnextgen has many extended features, for easier development.

BUGS

If you think you have found a bug, please check that you aragusiie latest version ofLnextgen
[http://os.ghalkes.nl/LLnextgen]. When reporting bugkease include a minimal grammar that demon-
strates the problem.

AUTHOR

G.P. Halkeslinextgen@ghalkes.nl>

COPYRIGHT

Copyright(© 2005,2006 G.P. Halkes

LLnextgen is licensed under the Open Software License mei&io.

For more details on the license, see the file COPYING in theia@ntation directory. On Un*x systems
this is usually /usr/share/doc/LLnextgen-0.3.1.

SEE ALSO

LLgen(1), bison(1), yacq1), lex(1), flex(1).

A detailed manual foLLnextgen is available as part of the distribution. It includes thetaynfor the
grammar files, details on how to use the generated parseuinpyograms, and details on the workings of
the generated parsers. This manual can be found in the dotatios directory. On Un*x systems this is
usually /usr/share/doc/LLnextgen-0.3.1.

26

