
����������	
����
�����
������

�����	��

�����������	�
	�
�

PDFlib GmbH München, Germany

www.pdflib.com

Version 5.0.0

http://www.pdflib.com

Copyright © 1997–2003 PDFlib GmbH and Thomas Merz. All rights reserved.

PDFlib GmbH
Tal 40, 80331 München, Germany
http://www.pdflib.com

phone +49 • 89 • 29 16 46 87
fax +49 • 89 • 29 16 46 86

If you have questions check the PDFlib mailing list and archive at http://groups.yahoo.com/group/pdflib

Licensing contact: sales@pdflib.com
Support for commercial PDFlib licensees: support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

PDFlib and the PDFlib logo are registered trademarks of PDFlib GmbH. PDFlib licensees are granted the
right to use the PDFlib name and logo in their product documentation. However, this is not required.

Adobe, Acrobat, and PostScript are trademarks of Adobe Systems Inc. AIX, IBM, OS/390, WebSphere, iSeries,
and zSeries are trademarks of International Business Machines Corporation. ActiveX, Microsoft, Windows,
and Windows NT are trademarks of Microsoft Corporation. Apple, Macintosh and TrueType are trademarks
of Apple Computer, Inc. Unicode and the Unicode logo are trademarks of Unicode, Inc. Unix is a trademark
of The Open Group. Java and Solaris are trademarks of Sun Microsystems, Inc. HKS is a registered trade-
mark of the HKS brand association: Hostmann-Steinberg, K+E Printing Inks, Schmincke. Other company
product and service names may be trademarks or service marks of others.

PANTONE® colors displayed in the software application or in the user documentation may not match
PANTONE-identified standards. Consult current PANTONE Color Publications for accurate color. PANTONE®
and other Pantone, Inc. trademarks are the property of Pantone, Inc. © Pantone, Inc., 2003.
Pantone, Inc. is the copyright owner of color data and/or software which are licensed to PDFlib GmbH to
distribute for use only in combination with PDFlib Software. PANTONE Color Data and/or Software shall
not be copied onto another disk or into memory unless as part of the execution of PDFlib Software.

PDFlib contains modified parts of the following third-party software:
PNG image reference library (libpng), Copyright © 1998-2002 Glenn Randers-Pehrson
Zlib compression library, Copyright © 1995-2002 Jean-loup Gailly and Mark Adler
TIFFlib image library, Copyright © 1988-1997 Sam Leffler, Copyright © 1991-1997 Silicon Graphics, Inc.
Cryptographic software written by Eric Young, Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)

PDFlib contains the RSA Security, Inc. MD5 message digest algorithm.
Viva Software GmbH contributed improvements to the font handling for Mac OS.

Author: Thomas Merz
Design and illustrations: Alessio Leonardi
Quality control (manual): Katja Karsunke, Rainer Schaaf, Kurt Stützer
Quality control (software): a cast of thousands

http://www.pdflib.com
http://groups.yahoo.com/group/pdflib
mailto:sales@pdflib.com
mailto:support@pdflib.com

Contents 3

Contents
0 Applying the PDFlib License Key 9

1 Introduction 11

1.1 PDFlib Programming 11

1.2 PDFlib Features 13

1.3 Availability of Features in different Products 15

1.4 Acrobat Versions and PDFlib Features 16

2 PDFlib Language Bindings 17

2.1 Overview 17

2.2 Cobol Binding 18

2.3 COM Binding 18

2.4 C Binding 18
2.4.1 Availability and Special Considerations for C 18
2.4.2 The »Hello world« Example in C 18
2.4.3 Using PDFlib as a DLL loaded at Runtime 19
2.4.4 Error Handling in C 20
2.4.5 Memory Management in C 21

2.5 C++ Binding 22
2.5.1 Availability and Special Considerations for C++ 22
2.5.2 The »Hello world« Example in C++ 22
2.5.3 Error Handling in C++ 23
2.5.4 Memory Management in C++ 23

2.6 Java Binding 23
2.6.1 Installing the PDFlib Java Edition 24
2.6.2 The »Hello world« Example in Java 25
2.6.3 Error Handling in Java 26

2.7 .NET Binding 26

2.8 Perl Binding 27
2.8.1 Installing the PDFlib Perl Edition 27
2.8.2 The »Hello world« Example in Perl 27
2.8.3 Error Handling in Perl 28

2.9 PHP Binding 28
2.9.1 Installing the PDFlib PHP Edition 28
2.9.2 The »Hello world« Example in PHP 29
2.9.3 Error Handling in PHP 29

2.10 Python Binding 30
2.10.1 Installing the PDFlib Python Edition 30

4 Contents

2.10.2 The »Hello world« Example in Python 30
2.10.3 Error Handling in Python 30

2.11 RPG Binding 31
2.11.1 Compiling and Binding RPG Programs for PDFlib 31
2.11.2 The »Hello world« Example in RPG 31
2.11.3 Error Handling in RPG 33

2.12 Tcl Binding 34
2.12.1 Installing the PDFlib Tcl Edition 34
2.12.2 The »Hello world« Example in Tcl 35
2.12.3 Error Handling in Tcl 35

3 PDFlib Programming 37

3.1 General Programming 37
3.1.1 PDFlib Program Structure and Function Scopes 37
3.1.2 Parameters 37
3.1.3 Exception Handling 38
3.1.4 Option Lists 39
3.1.5 The PDFlib Virtual File System (PVF) 40
3.1.6 Resource Configuration and File Searching 41
3.1.7 Generating PDF Documents in Memory 45
3.1.8 Using PDFlib on EBCDIC-based Platforms 46

3.2 Page Descriptions 47
3.2.1 Coordinate Systems 47
3.2.2 Page Sizes and Coordinate Limits 49
3.2.3 Paths 50
3.2.4 Templates 51

3.3 Working with Color 53
3.3.1 Color and Color Spaces 53
3.3.2 Patterns and Smooth Shadings 53
3.3.3 Spot Colors 54
3.3.4 Color Management and ICC Profiles 57
3.3.5 Working with ICC Profiles 58
3.3.6 Device-Independent CIE L*a*b* Color 59
3.3.7 Rendering Intents 59

3.4 PDF/X Support 61
3.4.1 Generating PDF/X-conforming Output 61
3.4.2 Importing PDF/X Documents with PDI 63

3.5 Passwords and Permissions 65
3.5.1 Strengths and Weaknesses of PDF Security Features 65
3.5.2 Protecting Documents with PDFlib 66

Contents 5

4 Text Handling 67

4.1 Overview of Fonts and Encodings 67
4.1.1 Supported Font Formats 67
4.1.2 Encodings 68
4.1.3 Support for the Unicode Standard 69

4.2 Supported Font Formats 70
4.2.1 PostScript Fonts 70
4.2.2 TrueType and OpenType Fonts 71
4.2.3 User-Defined (Type 3) Fonts 72

4.3 Font Embedding and Subsetting 74
4.3.1 Making Fonts available to PDFlib 74
4.3.2 Font Embedding 74
4.3.3 Font Subsetting 75

4.4 Encoding Details 77
4.4.1 8-Bit Encodings 77
4.4.2 Symbol Fonts and Font-specific Encodings 80
4.4.3 Glyph ID Addressing for TrueType and OpenType Fonts 81
4.4.4 The Euro Glyph 81

4.5 Unicode Support 83
4.5.1 Unicode for Page Descriptions 83
4.5.2 Unicode Text Formats 84
4.5.3 Unicode for Hypertext Elements 85
4.5.4 Unicode Support in PDFlib Language Bindings 87

4.6 Text Metrics, Text Variations, and Box Formatting 88
4.6.1 Font and Character Metrics 88
4.6.2 Kerning 89
4.6.3 Text Variations 90
4.6.4 Box Formatting 91

4.7 Chinese, Japanese, and Korean Text 93
4.7.1 CJK support in Acrobat and PDF 93
4.7.2 Standard CJK Fonts and CMaps 93
4.7.3 Custom CJK Fonts 96

4.8 Placing and Fitting Text 98
4.8.1 Simple Text Placement 98
4.8.1 Placing Text in a Box 99
4.8.1 Aligning Text 100

5 Importing and Placing Objects 101

5.1 Importing Raster Images 101
5.1.1 Basic Image Handling 101
5.1.2 Supported Image File Formats 102
5.1.3 Image Masks and Transparency 104
5.1.4 Colorizing Images 106
5.1.5 Multi-Page Image Files 107

6 Contents

5.2 Importing PDF Pages with PDI (PDF Import Library) 108
5.2.1 PDI Features and Applications 108
5.2.2 Using PDI Functions with PDFlib 108
5.2.3 Acceptable PDF Documents 110

5.3 Placing Images and Imported PDF Pages 111
5.3.1 Scaling, Orientation, and Rotation 111
5.3.1 Adjusting the Page Size 113

6 Variable Data and Blocks 117

6.1 Overview of the PDFlib Block Concept 117
6.1.1 Complete Separation of Document Design and Program Code 117
6.1.2 Block Properties 118
6.1.3 Why not use PDF Form Fields? 119

6.2 Creating Variable Data Blocks 120
6.2.1 Creating Blocks in Acrobat with the PDFlib Block Plugin 120
6.2.2 Editing Block Properties 122
6.2.3 Converting PDF Form Fields to PDFlib Blocks 123

6.3 Standard Properties for automated Processing 125

6.4 Querying Block Names and Properties 128
6.4.1 Finding Block Names 128
6.4.2 Querying Block Properties 128

7 PDFlib and PDI API Reference 131

7.1 Data Types and Naming Conventions 131

7.2 General Functions 132
7.2.1 Setup 132
7.2.2 Document and Page 135
7.2.3 Parameter Handling 138
7.2.4 PDFlib Virtual File System (PVF) Functions 139
7.2.5 Exception Handling 141

7.3 Text Functions 142
7.3.1 Font Handling 142
7.3.2 User-defined (Type 3) Fonts 145
7.3.3 Encoding Definition 146
7.3.4 Text Output 147

7.4 Graphics Functions 154
7.4.1 Graphics State Functions 154
7.4.2 Saving and Restoring Graphics States 156
7.4.3 Coordinate System Transformation Functions 157
7.4.4 Explicit Graphics States 159
7.4.5 Path Construction 160
7.4.6 Path Painting and Clipping 163

Contents 7

7.5 Color Functions 165
7.5.1 Setting Color and Color Space 165
7.5.2 Patterns and Shadings 168

7.6 Image and Template Functions 171
7.6.1 Images 171
7.6.2 Templates 176
7.6.3 Deprecated Functions 176

7.7 PDF Import (PDI) Functions 177
7.7.1 Document and Page 177
7.7.2 Other PDI Processing 180
7.7.3 Parameter Handling 181

7.8 Block Filling Functions (PPS) 183

7.9 Hypertext Functions 186
7.9.1 Document Open Action and Open Mode 186
7.9.2 Viewer Preferences 186
7.9.3 Bookmarks 187
7.9.4 Document Information Fields 188
7.9.5 Page Transitions 189
7.9.6 File Attachments 189
7.9.7 Note Annotations 190
7.9.8 Link Annotations and Named Destinations 191
7.9.9 Thumbnails 195

8 References 197

A PDFlib Quick Reference 199

B Revision History 204

Index 205

8 Contents

9

0 Applying the PDFlib License Key
All binary PDFlib and PDI versions supplied by PDFlib GmbH can be used as fully func-
tional evaluation versions regardless of whether or not you obtained a commercial li-
cense. However, unlicensed versions will display a www.pdflib.com demo stamp (the
»nagger«) cross all generated pages. Companies which are seriously interested in PDFlib
licensing and wish to get rid of the nagger during the evaluation phase or for prototype
demos can submit their company and project details to sales@pdflib.com, and request a
temporary license key. Once you purchased a PDFlib or PDI license key you must apply
it in order to get rid of the demo stamp. There are several methods available:
> Add a line to your script or program which sets the license key at runtime:

PDF_set_parameter(p, "license", "...your license key...");

The license parameter must be set only once, immediately after instantiating the
PDFlib object (i.e., after PDF_new() or equivalent call).

> Enter the license key in a text file according to the following format:

PDFlib license file 1.0
Licensing information for PDFlib GmbH products
PDFlib 5.0.0 ...your license key...

The license file may contain license keys for multiple PDFlib GmbH products on sep-
arate lines. Next, you must inform PDFlib about the license file, either by setting the
licensefile parameter immediately after instantiating the PDFlib object (i.e., after PDF_
new() or equivalent call) as follows:

PDF_set_parameter(p, "licensefile", "/path/to/license/file");

or by setting the environment variable PDFLIBLICENSEFILE with a command similar to
the following:

export PDFLIBLICENSEFILE=/path/to/license/file

Note that PDFlib and PDI are different products, and require different license keys al-
though they are delivered in a single package. PDI serials will also be valid for PDFlib,
but not vice versa. Also, PDFlib and PDI license keys are platform-dependent, and can
only be used on the platform for which they have been purchased.

Evaluating features which are not yet licensed. You can fully evaluate all feature by
using the software without any license key applied. However, once you applied a valid
license key for a particular product using features of a higher category will no longer be
available. For example, if you installed a valid PDFlib license key the PDI functionality
will no longer be available for testing. Similarly, after installing a PDFlib+PDI license key
the personalization features (block functions) will no longer be available.

When a license key for a product has already been installed set a 0 dummy license
key to enable functionalty of a higher product class for evaluation:

PDF_set_parameter(p, "license", "0");

This will enable the previously disabled functions, and re-activate the demo stamp
across all pages.

10 Chapter 0: Applying the PDFlib License Key

PDFlib licensing options. Different licensing options are available for PDFlib use on
one or more servers, and for redistributing PDFlib with your own products. We also of-
fer support and source code contracts. Licensing details and the PDFlib purchase order
form can be found in the PDFlib distribution. Please contact us if you are interested in
obtaining a commercial PDFlib license, or have any questions:

PDFlib GmbH, Licensing Department
Tal 40, 80331 München, Germany
http://www.pdflib.com
phone +49 • 89 • 29 16 46 87, fax +49 • 89 • 29 16 46 86
Licensing contact: sales@pdflib.com
Support for PDFlib licensees: support@pdflib.com

http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

1.1 PDFlib Programming 11

1 Introduction

1.1 PDFlib Programming
What is PDFlib? PDFlib is a library which allows you to generate files in Adobe’s Porta-
ble Document Format (PDF). PDFlib acts as a backend to your own programs. While you
(the programmer) are responsible for retrieving the data to be processed, PDFlib takes
over the task of generating the PDF code which graphically represents your data. While
you must still format and arrange your text and graphical objects, PDFlib frees you
from the internal details of PDF. PDFlib offers many useful functions for creating text,
graphics, images, and hypertext elements in PDF. The optional add-on PDF Import Li-
brary (PDI) can be used to integrate pages from existing PDF documents into the gener-
ated output.

How can I use PDFlib? PDFlib is available on a variety of platforms, including Unix,
Windows, Mac OS, and EBCDIC-based systems such as IBM eServer iSeries 400 and
zSeries S/390. PDFlib itself is written in the C language, but it can be also accessed from

PDF_circle()

PDF_setfont()
PDF_arc()

PDF_show()

PD
F_

lin
et

o(
)

COM

C++
Java

CPython

Tcl

Perl

PHP

Fig. 1.1 The inner workings of PDFlib

12 Chapter 1: Introduction

several other languages and programming environments which are called language
bindings. These language bindings cover all major Web and stand-alone application lan-
guages currently in use. The Application Programming Interface (API) is easy to learn,
and is identical for all bindings. Currently the following bindings are supported:
> COM for use with Visual Basic, Active Server Pages with VBScript or JScript, Borland

Delphi, Windows Script Host, and other environments
> ANSI C
> ANSI C++
> Cobol (IBM eServer zSeries)
> Java, including servlets
> .NET for use with C#, VB.NET, ASP.NET, and other environments
> PHP hypertext processor
> Perl
> Python
> RPG (IBM eServer iSeries 400)
> Tcl

What can I use PDFlib for? PDFlib’s primary target is creating dynamic PDF within
your own software, or on the World Wide Web. Similar to HTML pages dynamically gen-
erated on the Web server, you can use a PDFlib program for dynamically generating PDF
reflecting user input or some other dynamic data, e.g. data retrieved from the Web ser-
ver’s database. The PDFlib approach offers several advantages:
> PDFlib can be integrated directly in the application generating the data, eliminating

the convoluted creation path application–PostScript–Acrobat Distiller–PDF.
> As an implication of this straightforward process, PDFlib is the fastest PDF-generat-

ing method, making it perfectly suited for the Web.
> PDFlib’s thread-safety as well as its robust memory and error handling support the

implementation of high-performance server applications.
> PDFlib is available for a variety of operating systems and development environ-

ments.

Requirements for using PDFlib. PDFlib makes PDF generation possible without wading
through the 900+ page PDF specification. While PDFlib tries to hide technical PDF de-
tails from the user, a general understanding of PDF is useful. In order to make the best
use of PDFlib, application programmers should ideally be familiar with the basic graph-
ics model of PostScript (and therefore PDF). However, a reasonably experienced applica-
tion programmer who has dealt with any graphics API for screen display or printing
shouldn’t have much trouble adapting to the PDFlib API as described in this manual.

About this manual. This manual describes the API implemented in PDFlib. It does not
describe the process of building the library binaries. Functions not described in this
manual are unsupported, and should not be used. This manual does not attempt to ex-
plain Acrobat features. Please refer to the Acrobat product literature, and the material
cited at the end of this manual for further reference. The PDFlib distribution additional
more examples for calling PDFlib functions.

1.2 PDFlib Features 13

1.2 PDFlib Features
Table 1.1 lists the major PDFlib API features for generating and importing PDF.

Table 1.1 Features of PDFlib, PDFlib+PDI, and the PDFlib Personalization Server (PPS)

topic V 5.0 features
PDF output PDF documents of arbitrary length, directly in memory (for Web servers) or on disk file

arbitrary page size–each page may have a different size
compression for text, vector graphics, image data, and file attachments
compatibility modes for PDF 1.3, 1.4, and 1.5 (Acrobat 4, 5, and 6)

PDF input import pages from existing PDF documents (PDFlib+PDI only)
X flexible PDF page placement and formatting

Blocks X PDF personalization with PDFlib blocks for text, image, and PDF data (PPS only)
X PDFlib Block plugin for Acrobat to create PDFlib blocks

Graphics common vector graphics primitives: lines, curves, arcs, rectangles, etc.
vector paths for stroking, filling, and clipping

X smooth shadings (color blends)
pattern fills and strokes
efficiently re-use text or vector graphics with templates

X explicit graphics state parameters for text knockout, overprinting etc.
X transparency (opacity) and blend modes

Color grayscale, RGB, and CMYK color
X CIE L*a*b* color
X ICC-based color with standard ICC color profiles
X built-in PANTONE® and HKS® spot color tables

user-defined spot colors
X default gray, RGB, and CMYK color spaces to remap device-dependent colors
X rendering intent for text, graphics, and raster images

Prepress X generate output conforming to PDF/X-1, PDF/X-1a, and PDF/X-3
X embed output intent ICC profile or reference standard output intent
X copy output intent from imported PDF documents (PDFlib+PDI only)

Fonts text output in different fonts; underlined, overlined, and strikeout text
X text column formatting and text line positioning options
X built-in metrics and kerning information for all glyphs in the PDF core fonts

font embedding
fonts can be pulled from the Windows or Mac host system

X TrueType (ttf and ttc) and PostScript Type 1 fonts (pfb and pfa, plus lwfn on the Mac)
OpenType fonts (ttf, otf) with PostScript or TrueType outlines
AFM and PFM PostScript font metrics files

X kerning for PostScript, TrueType, and OpenType fonts
X subsetting for TrueType and OpenType fonts
X user-defined (Type 3) fonts
X TrueType and OpenType glyph id addressing for advanced typesetting applications
X proportional widths for standard CJK fonts

retrieve character metrics for exact formatting

14 Chapter 1: Introduction

fetch code pages from the system (Windows, IBM eServer iSeries and zSeries)
Internatio-
nalization
and Unicode

support for a variety of encodings (both built-in and user-defined)

standard CJK font and CMap support for Chinese, Japanese, and Korean text
X custom CJK fonts in the TrueType and OpenType formats with Unicode encoding

Euro character (subject to availability of the Euro glyph in the used font)
built-in international standards and vendor-specific code pages

X Unicode for page descriptions (UTF-8 and UCS-2 formats, little- and big-endian)
Unicode for hypertext features

X embed Unicode information in PDF for proper text extraction in Acrobat
Security X generate output with 40-bit or 128-bit encryption

X generate output with permission settings
X import encrypted documents (master password required; PDI only)

Hypertext page transition effects such as shades and mosaic
nested bookmarks
PDF links, launch links (other document types), and Web links
document information: four standard fields (Title, Subject, Author, Keywords) plus
unlimited number of user-defined info fields
file attachments and note annotations

X named destinations for links, bookmarks, and document open action
X viewer preferences (hide menu bar, etc.)
X more bookmark targets
X user coordinates (instead of default coordinates) for hypertext elements

Images X embed BMP, GIF (non-interlaced), PNG, TIFF, JPEG, and CCITT raster images
X automatic detection of image file formats (file format sniffing)
X use all kinds of image data from file or from memory

efficiently re-use image data, e.g., for repeated logos on each page
X transparent (masked) images including soft masks

image masks (transparent images with a color applied)
colorize images with a spot color

X flexible image placement and formatting
X honor embedded ICC profiles in JPEG, TIFF, and PNG
X apply an external ICC profile to an image
X image interpolation (smooth images with low resolution)

Programming language bindings for Cobol, COM, C, C++, Java, .NET, Perl, PHP, Python, RPG, Tcl
thread-safe for deployment in multi-threaded server applications
configurable error handler and memory management for C and C++
exception handling integrated with the host language’s native exception handling

X virtual file system for supplying data in memory, e.g., images, fonts, ICC profiles

Table 1.1 Features of PDFlib, PDFlib+PDI, and the PDFlib Personalization Server (PPS)

topic V 5.0 features

1.3 Availability of Features in different Products 15

1.3 Availability of Features in different Products
Table 1.2 details the availability of features in the open source edition of PDFlib and var-
ious commercial products.

Table 1.2 Availability of features in different products

Feature API functions and parameters PD
Fl

ib
 Li

te
(o

pe
n

so
ur

ce
)

PD
Fl

ib

PD
Fl

ib
+P

DI

PD
Fl

ib
 P

er
so

na
liz

at
io

n
Se

rv
er

 (P
PS

)

basic PDF generation (all except those listed below) X X X X
works on EBCDIC-based systems – X X X
encryption (password protection
and permission settings)

userpassword, masterpassword,
permissions

– X X X

font subsetting PDF_load_font() with subsetting option – X X X
kerning PDF_load_font() with kerning option – X X X
access Mac and Windows host fonts PDF_load_font() – X X X
access system encodings on
Windows, iSeries, and zSeries

PDF_load_font() – X X X

Unicode encoding and ToUnicode
CMaps for PS, TT and OT fonts

PDF_load_font() with encoding = unicode,
autocidfont, unicodemap

– X X X

glyph ID addressing PDF_load_font() with encoding = glyphid – X X X
extended encoding support for
PostScript-based OpenType fonts

PDF_load_font() – X X X

spot color PDF_makespotcolor() – X X X
PDF/X support PDF_process_pdi(), pdfx – X X X
ICC profile support PDF_load_iccprofile(), PDF_setcolor() with

iccbasedgray/rgb/cmyk, PDF_load_image()
with honoriccprofile option, honoriccprofile

– X X X

CIE L*a*b* color PDF_setcolor() with type = lab – X X X
default color spaces defaultgray/rgb/cmyk – X X X
PDF import (PDI) PDF_open_pdi(), PDF_open_pdi_callback(),

PDF_open_pdi_page(),
PDF_fit_pdi_page(), PDF_process_pdi(),
PDF_get_pdi_value(),
PDF_get_pdi_parameter()

– – X X

variable data processing and
personalization with blocks

PDF_fill_textblock(),
PDF_fill_imageblock(),
PDF_fill_pdfblock()

– – – X

query standard and custom block
properties

PDF_get_pdi_value(), PDF_get_pdi_
parameter() with vdp/Blocks keys

– – – X

PDFlib Block plugin for Acrobat interactively create PDFlib blocks – – – X

16 Chapter 1: Introduction

1.4 Acrobat Versions and PDFlib Features
At the user’s option PDFlib generates output according to PDF 1.3 (Acrobat 4) or PDF 1.4
(Acrobat 5). In PDF 1.3 compatibility mode the PDFlib features listed in Table 1.3 will not
be available. Trying to use one of these features in PDF 1.3 mode will result in an excep-
tion.

Table 1.3 PDFlib features which are not available in PDF 1.3 compatibility mode

Feature PDFlib API functions and parameters
smooth shadings (color blends) PDF_shading_pattern(), PDF_shfill(), PDF_shading()
soft mask PDF_load_image() with the masked option referring to an

image with more than 1 bit pixel depth
128-bit encryption userpassword, masterpassword, permissions
extended permission settings (see Table 3.12) permissions
certain CMaps for CJK fonts (see Table 4.6) PDF_load_font()
certain settings in explicit graphics states, mostly
related to transparency

PDF_create_gstate() with options alphaisshape,
blendmode, opacityfill, opacitystroke, textknockout

2.1 Overview 17

2 PDFlib Language Bindings

2.1 Overview
While the C programming language has been one of the cornerstones of systems and
applications software development for decades, a whole slew of other languages have
been around for quite some time which are either related to new programming para-
digms (such as C++), open the door to powerful platform-independent scripting capabil-
ities (such as Perl, Tcl, and Python), promise a new quality in software portability (such
as Java), or provide the glue among many different technologies while being practically
platform-specific (such as COM).

Naturally, the question arises how to support so many languages with a single li-
brary. Fortunately, all modern language environments are extensible in some way or
another. This includes support for extensions written in the C language in all cases.
Looking closer, each environment has its own restrictions and requirements regarding
the implementation of extensions.

Availability and platforms. All PDFlib features are available on all platforms and in all
language bindings (with a few minor exceptions which are noted in the manual). Table
2.1 lists the language/platform combinations we used for testing.

PDFlib on embedded systems. It shall be noted that PDFlib can also be used on embed-
ded systems, and has been ported to the Windows CE and EPOC environments as well as
custom embedded systems. For use with restricted environments certain features are
configurable in order to reduce PDFlib’s resource requirements. If you are interested in
details please contact us via sales@pdflib.com.

Table 2.1 Tested language and platform combinations

language
Unix (Linux, Solaris, HP-UX,
Mac OS X, AIX, IRIX a.o.) Windows

IBM eServer
iSeries and zSeries

Cobol – – ILE Cobol
COM – ASP (PWS, IIS 4, 5)

WSH (VBScript 5, JScript 5)
Visual Basic 6.0, Borland Delphi 5, 6

–

ANSI C gcc, IBM C, Sun Forte,
and other ANSI C compilers

Microsoft Visual C++ 6, 7
Metrowerks CodeWarrior 7
Borland C++ Builder 5

IBM c89
SAS C for MVS

ANSI C++ gcc and other ANSI C++
compilers

Microsoft Visual C++ 6, 7
Metrowerks CodeWarrior 7

IBM c89

Java Sun JDK 1.2.2, 1.3, 1.4
IBM JDK 1.1.8

Sun JDK 1.1.8, 1.2.2, 1.3, 1.4
ColdFusion MX

JDK 1.2, 1.3

.NET – .NET Framework 1.0 –
Perl 5.6–5.8 5.6–5.8 –
PHP PHP 4.04 – 4.3.1 PHP 4.04 – 4.3.1 –
Python Python 1.6, 2.0 – 2.2 Python 1.6, 2.0 –2.2 –

RPG – – V3R7M0 and above
Tcl Tcl 8.3.2 and 8.4a2 Tcl 8.3.2 and 8.4a2 –

18 Chapter 2: PDFlib Language Bindings

2.2 Cobol Binding
(This section is not included in this edition of the PDFlib manual.)

2.3 COM Binding
(This section is not included in this edition of the PDFlib manual.)

2.4 C Binding
2.4.1 Availability and Special Considerations for C

PDFlib itself is written in the ANSI C language. In order to use the PDFlib C binding, you
can use a static or shared library (DLL on Windows and MVS), and you need the central
PDFlib include file pdflib.h for inclusion in your PDFlib client source modules. Alterna-
tively, pdflibdl.h can be used for dynamically loading the PDFlib DLL at runtime (see be-
low). The PDFlib distribution is prepared for building both static or dynamic versions of
the library.

2.4.2 The »Hello world« Example in C
The following example shows a simple C program which links against a static or shared/
dynamic PDFlib library:

#include <stdio.h>
#include <stdlib.h>

#include "pdflib.h"

int
main(void)
{
 PDF *p;
 int font;

 /* create a new PDFlib object */
 if ((p = PDF_new()) == (PDF *) 0)
 {
 printf("Couldn't create PDFlib object (out of memory)!\n");
 return(2);
 }

 PDF_TRY(p) {
/* open new PDF file */
if (PDF_open_file(p, "hello.pdf") == -1) {
 fprintf(stderr, "Error: cannot open PDF file hello.pdf.\n");
 return(2);
}

PDF_set_info(p, "Creator", "hello.c");
PDF_set_info(p, "Author", "Thomas Merz");
PDF_set_info(p, "Title", "Hello, world (C)!");

PDF_begin_page(p, a4_width, a4_height); /* start a new page*/

2.4 C Binding 19

/* Change "host" encoding to "winansi" or whatever you need! */
font = PDF_load_font(p, "Helvetica-Bold", 0, "host", "");

PDF_setfont(p, font, 24);
PDF_set_text_pos(p, 50, 700);
PDF_show(p, "Hello, world!");
PDF_continue_text(p, "(says C)");
PDF_end_page(p); /* close page*/

PDF_close(p); /* close PDF document*/
 }

 PDF_CATCH(p) {
 printf("PDFlib exception occurred in hello sample:\n");
 printf("[%d] %s: %s\n",

 PDF_get_errnum(p), PDF_get_apiname(p), PDF_get_errmsg(p));
 PDF_delete(p);
 return(2);
 }

 PDF_delete(p); /* delete the PDFlib object */

 return 0;
}

2.4.3 Using PDFlib as a DLL loaded at Runtime
While most clients will use PDFlib as a statically bound library or a dynamic library
which is bound at link time, you can also load the PDFlib DLL at runtime and dynamical-
ly fetch pointers to all API functions. This is especially useful on MVS where the library
is customarily loaded as a DLL at runtime without linking to PDFlib at all. PDFlib sup-
ports a special mechanism to facilitate this usage. It works as follows:
> Include pdflibdl.h instead of pdflib.h.
> Compile the auxiliary module pdflibdl.c and link your application against it.
> Use PDF_boot_dll(), and use function pointers for all PDFlib calls.

Note Loading the PDFlib DLL at runtime is supported on selected platforms only.

The following example loads the PDFlib DLL at runtime using the PDF_boot_dll() helper
function:

#include <stdio.h>
#include <stdlib.h>

#include "pdflibdl.h"

int
main(void)
{
 PDF *p;
 int font;
 PDFlib_api *PDFlib;

 /* load the PDFlib dynamic library */
 if ((PDFlib = PDF_boot_dll()) == NULL)
 {

20 Chapter 2: PDFlib Language Bindings

fprintf(stderr, "Error: couldn't load PDFlib DLL.\n");
return(2);

 }

 /* create a new PDFlib object */
 if ((p = PDFlib->PDF_new()) == (PDF *) 0)
 {
 printf("Couldn't create PDFlib object (out of memory)!\n");
 return(2);
 }

 PDF_TRY(p) {
/* open new PDF file */
if (PDFlib->PDF_open_file(p, "hellodl.pdf") == -1) {
 fprintf(stderr, "Error: cannot open PDF file hellodl.pdf.\n");
 return(2);
}

PDFlib->PDF_set_info(p, "Creator", "hello.c");
PDFlib->PDF_set_info(p, "Author", "Thomas Merz");
PDFlib->PDF_set_info(p, "Title", "Hello, world (C DLL)!");

PDFlib->PDF_begin_page(p, a4_width, a4_height); /* start a new page */

/* Change "host" encoding to "winansi" or whatever you need! */
font = PDFlib->PDF_load_font(p, "Helvetica-Bold", 0, "host", "");

PDFlib->PDF_setfont(p, font, 24);
PDFlib->PDF_set_text_pos(p, 50, 700);
PDFlib->PDF_show(p, "Hello, world!");
PDFlib->PDF_continue_text(p, "(says C DLL)");
PDFlib->PDF_end_page(p); /* close page */

PDFlib->PDF_close(p); /* close PDF document */
 }

 PDF_CATCH(p) {
 printf("PDFlib exception occurred in hellodl sample:\n");
 printf("[%d] %s: %s\n",

 PDFlib->PDF_get_errnum(p), PDFlib->PDF_get_apiname(p),
 PDFlib->PDF_get_errmsg(p));
PDFlib->PDF_delete(p);

 return(2);
 }

 PDFlib->PDF_delete(p); /* delete the PDFlib object */

 PDF_shutdown_dll(PDFlib); /* unload the library */

 return 0;
}

2.4.4 Error Handling in C
PDFlib supports structured exception handling with try/catch clauses. This allows C and
C++ clients to catch exceptions which are thrown by PDFlib, and react on the exception
in an adequate way. In the catch clause the client will have access to a string describing

2.4 C Binding 21

the exact nature of the problem, a unique exception number, and the name of the
PDFlib API function which threw the exception. The general structure of a PDFlib C cli-
ent program with exception handling looks as follows:

PDF_TRY(p)
{

...some PDFlib instructions...
}
PDF_CATCH(p)
{
 printf("PDFlib exception occurred in hello sample:\n");
 printf("[%d] %s: %s\n",
 PDF_get_errnum(p), PDF_get_apiname(p), PDF_get_errmsg(p));
 PDF_delete(p);
 return(2);
}

PDF_delete(p);

Note PDF_TRY/PDF_CATCH are implemented as tricky preprocessor macros. Accidentally omitting
one of these will result in compiler error messages which may be difficult to comprehend. Make
sure to use the macros exactly as shown above, with no additional code between the TRY and
CATCH clauses (except PDF_CATCH()).

An important task of the catch clause is to clean up PDFlib internals using PDF_delete()
and the pointer to the PDF object. PDF_delete() will also close the output file if necessary.
PDFlib functions other than PDF_delete() and PDF_get_opaque() must not be called from
within a client-supplied error handler. After fatal exceptions the PDF document cannot
be used, and will be left in an incomplete and inconsistent state. Obviously, the appro-
priate action when an exception occurs is completely application specific.

For C and C++ clients which do not catch exceptions, the default action upon excep-
tions is to issue an appropriate message on the standard error channel, and exit on fatal
errors. The PDF output file will be left in an incomplete state! Since this may not be ade-
quate for a library routine, for serious PDFlib projects it is strongly advised to leverage
PDFlib’s exception handling facilities. A user-defined catch clause may, for example,
present the error message in a GUI dialog box, and take other measures instead of abort-
ing.

Old-style error handlers. In addition to structured exception handling PDFlib also
supports the notion of a client-supplied callback function which be called when an ex-
ception occurs. However, this method is considered obsolete and supported for compat-
ibility reasons only. Error handlers will be ignored in PDF_TRY blocks.

2.4.5 Memory Management in C
In order to allow for maximum flexibility, PDFlib’s internal memory management rou-
tines (which are based on standard C malloc/free) can be replaced by external procedures
provided by the client. These procedures will be called for all PDFlib-internal memory
allocation or deallocation. Memory management routines can be installed with a call to
PDF_new2(), and will be used in lieu of PDFlib’s internal routines. Either all or none of
the following routines must be supplied:
> an allocation routine
> a deallocation (free) routine

22 Chapter 2: PDFlib Language Bindings

> a reallocation routine for enlarging memory blocks previously allocated with the al-
location routine.

The signatures of the memory routines can be found in Section 7.2, »General Func-
tions«, page 132. These routines must adhere to the standard C malloc/free/realloc se-
mantics, but may choose an arbitrary implementation. All routines will be supplied
with a pointer to the calling PDF object. The only exception to this rule is that the very
first call to the allocation routine will supply a PDF pointer of NULL. Client-provided
memory allocation routines must therefore be prepared to deal with a NULL PDF poin-
ter.

Using the PDF_get_opaque() function, an opaque application specific pointer can be
retrieved from the PDF object. The opaque pointer itself is supplied by the client in the
PDF_new2() call. The opaque pointer is useful for multi-threaded applications which
may want to keep a pointer to thread- or class specific data inside the PDF object, for use
in memory management or error handling.

2.5 C++ Binding
2.5.1 Availability and Special Considerations for C++

In addition to the pdflib.h C header file, an object-oriented wrapper for C++ is supplied
for PDFlib clients. It requires the pdflib.hpp header file, which in turn includes pdflib.h.
The corresponding pdflib.cpp module should be linked against the application which in
turn should be linked against the generic PDFlib C library.

Using the C++ object wrapper replaces the PDF_ prefix in all PDFlib function names
with a more object-oriented approach. Keep this in mind when reading the PDFlib API
descriptions in this manual which are documented in C style.

2.5.2 The »Hello world« Example in C++
#include <iostream>

#include "pdflib.hpp"

int
main(void)
{
 try {

int font;
PDFlib p; // the PDFlib object

// Open new PDF file
if (p.open("hello.pdf") == -1) {
 cerr << "Error: cannot open PDF file hello.pdf" << endl;
 return 2;
}

p.set_info("Creator", "hello.cpp");
p.set_info("Author", "Thomas Merz");
p.set_info("Title", "Hello, world (C++)!");

// start a new page
p.begin_page((float) a4_width, (float) a4_height);

2.6 Java Binding 23

// Change "host" encoding to "winansi" or whatever you need!
font = p.load_font("Helvetica-Bold", "host", "");

p.setfont(font, 24);
p.set_text_pos(50, 700);
p.show("Hello, world!");
p.continue_text("(says C++)");
p.end_page(); // finish page
p.close(); // close PDF document

 }
 catch (PDFlib::Exception &ex) {

cerr << "PDFlib exception occured in hello sample: " << endl;
cerr << "[" << ex.get_errnum() << "] " << ex.get_apiname()
 << ": " << ex.get_errmsg() << endl;
return 2;

 }

 return 0;
}

2.5.3 Error Handling in C++
In order to provide extended error information the PDFlib class provides a public
PDFlib::Exception class which exposes methods for retrieving the detailed error message,
the exception number, and the name of the PDFlib API function which threw the excep-
tion.

Native C++ exceptions thrown by PDFlib routines will behave as expected. The fol-
lowing code fragment will catch exceptions thrown by PDFlib:

try {
...some PDFlib instructions...

catch (PDFlib::Exception &ex) {
 cerr << "PDFlib exception occured in hello sample: " << endl;
 cerr << "[" << ex.get_errnum() << "] " << ex.get_apiname()
 << ": " << ex.get_errmsg() << endl;
 return 2;
}

2.5.4 Memory Management in C++
Client-supplied memory management for the C++ binding works the same as with the C
language binding.

The PDF constructor accepts an optional error handler, optional memory manage-
ment procedures, and an optional opaque pointer argument. Default NULL arguments
are supplied in pdflib.hpp which will result in PDFlib’s internal error and memory man-
agement routines becoming active. All memory management functions must be »C«
functions, not C++ methods.

2.6 Java Binding
Java supports a portable mechanism for attaching native language code to Java pro-
grams, the Java Native Interface (JNI). The JNI provides programming conventions for
calling native C or C++ routines from within Java code, and vice versa. Each C routine

24 Chapter 2: PDFlib Language Bindings

has to be wrapped with the appropriate code in order to be available to the Java VM, and
the resulting library has to be generated as a shared or dynamic object in order to be
loaded into the Java VM.

PDFlib supplies JNI wrapper code for using the library from Java. This technique al-
lows us to attach PDFlib to Java by loading the shared library from the Java VM. The ac-
tual loading of the library is accomplished via a static member function in the pdflib
Java class. Therefore, the Java client doesn’t have to bother with the specifics of shared
library handling.

Taking into account PDFlib’s stability and maturity, attaching the native PDFlib li-
brary to the Java VM doesn’t impose any stability or security restrictions on your Java
application, while at the same time offering the performance benefits of a native imple-
mentation. Regarding portability remember that PDFlib is available for all platforms
where there is a Java VM!

2.6.1 Installing the PDFlib Java Edition
Obviously, for developing Java applications you will need the JDK which includes sup-
port for the JNI. For compiling the PDFlib-supplied JNI wrapper file (C code), you will
need the JNI header files for C, which are part of the JDK. For the PDFlib binding to work,
the Java VM must have access to the PDFlib Java wrapper and the PDFlib Java package.

The PDFlib Java package. PDFlib is organized as a Java package with the following
package name:

com.pdflib.pdflib

This package is available in the pdflib.jar file and contains a single class called pdflib. You
can generate an abbreviated HTML-based version of the PDFlib API reference (this man-
ual) using the javadoc utility since the PDFlib class contains the necessary javadoc com-
ments. javadoc-generated documentation is contained in the PDFlib binary distribution.
Comments on using PDFlib with specific Java IDEs may be found in text files in the dis-
tribution set.

In order to supply this package to your application, you must add pdflib.jar to your
CLASSPATH environment variable, add the option -classpath pdflib.jar in your calls to the
Java compiler and runtime, or perform equivalent steps in your Java IDE. In the JDK you
can configure the Java VM to search for native libraries in a given directory by setting
the java.library.path property to the name of the directory, e.g.

java -Djava.library.path=. pdfclock

You can check the value of this property as follows:

System.out.println(System.getProperty("java.library.path"));

In addition, the following platform-dependent steps must be performed:

Unix. The library libpdf_java.so must be placed in one of the default locations for
shared libraries, or in an appropriately configured directory.

Windows. The library pdf_java.dll must be placed in the Windows system directory, or
a directory which is listed in the PATH environment variable.

2.6 Java Binding 25

PDFlib servlets and Java application servers. PDFlib is perfectly suited for server-side
Java applications, especially servlets. The PDFlib distribution contains examples of
PDFlib Java servlets which demonstrate the basic use. When using PDFlib with a specific
servlet engine the following configuration issues must be observed:
> The directory where the servlet engine looks for native libraries varies among ven-

dors. Common candidate locations are system directories, directories specific to the
underlying Java VM, and local directories of the servlet engine. Please check the doc-
umentation supplied by the vendor of your servlet engine.

> Servlets are often loaded by a special class loader which may be restricted, or use a
dedicated classpath. For some servlet engines it is required to define a special engine
classpath to make sure that the PDFlib package will be found.

More detailed notes on using PDFlib with specific servlet engines and Java application
servers can be found in additional documentation in the PDFlib distribution.

Note Since the EJB (Enterprise Java Beans) specification disallows the use of native libraries, PDFlib
cannot be used within EJBs.

2.6.2 The »Hello world« Example in Java
import java.io.*;
import com.pdflib.pdflib;
import com.pdflib.PDFlibException;

public class hello
{
 public static void main (String argv[])
 {

int font;
pdflib p = null ;

try{
 p = new pdflib();

 if (p.open_file("hello.pdf") == -1) {
throw new Exception("Couldn't open PDF file hello.pdf\n");

 }

 p.set_info("Creator", "hello.java");
 p.set_info("Author", "Thomas Merz");
 p.set_info("Title", "Hello world (Java)");

 p.begin_page(595, 842);

 /* Change "host" encoding to "winansi" or whatever you need! */
 font = p.load_font("Helvetica-Bold", "host", "");

 p.setfont(font, 18);

 p.set_text_pos(50, 700);
 p.show("Hello world!");
 p.continue_text("(says Java)");
 p.end_page();

 p.close();

26 Chapter 2: PDFlib Language Bindings

 } catch (PDFlibException e) {
 System.err.print("PDFlib exception occurred in hello sample:\n");
 System.err.print("[" + e.get_errnum() + "] " + e.get_apiname() +

 ": " + e.getMessage() + "\n");

 } catch (Exception e) {
 System.err.println(e.getMessage());

 } finally {
 if (p != null) {

p.delete(); /* delete the PDFlib object */
 }
 }
 }
}

2.6.3 Error Handling in Java
The Java binding installs a special error handler which translates PDFlib errors to native
Java exceptions. In case of an exception PDFlib will throw a native Java exception of the
following class:

PDFlibException

The Java exceptions can be dealt with by the usual try/catch technique:

try {

...some PDFlib instructions...

} catch (PDFlibException e) {
 System.err.print("PDFlib exception occurred in hello sample:\n");
 System.err.print("[" + e.get_errnum() + "] " + e.get_apiname() +
 ": " + e.getMessage() + "\n");

} catch (Exception e) {
System.err.println(e.getMessage());

} finally {
if (p != null) {

p.delete(); /* delete the PDFlib object */
}

}

Since PDFlib declares appropriate throws clauses, client code must either catch all possi-
ble PDFlib exceptions, or declare those itself.

2.7 .NET Binding
(This section is not included in this edition of the PDFlib manual.)

2.8 Perl Binding 27

2.8 Perl Binding
Perl1 supports a mechanism for extending the language interpreter via native C librar-
ies. The PDFlib wrapper for Perl consists of a C wrapper file and a Perl package module.
The C module is used to build a shared library which the Perl interpreter loads at run-
time, with some help from the package file. Perl scripts refer to the shared library mod-
ule via a use statement.

2.8.1 Installing the PDFlib Perl Edition
The Perl extension mechanism loads shared libraries at runtime through the DynaLoad-
er module. The Perl executable must have been compiled with support for shared librar-
ies (this is true for the majority of Perl configurations).

For the PDFlib binding to work, the Perl interpreter must access the PDFlib Perl wrap-
per and the module file pdflib_pl.pm. In addition to the platform-specific methods de-
scribed below you can add a directory to Perl’s @INC module search path using the -I
command line option:

perl -I/path/to/pdflib hello.pl

Unix. Perl will search both pdflib_pl.so and pdflib_pl.pm in the current directory, or the
directory printed by the following Perl command:

perl -e 'use Config; print $Config{sitearchexp};'

Perl will also search the subdirectory auto/pdflib_pl. PDFlib’s install mechanism will
place the files in the correct directories. Typical output of the above command looks like

/usr/lib/perl5/site_perl/5.8/i686-linux

Windows. PDFlib supports the ActiveState port of Perl 5 to Windows, also known as
ActivePerl.2 Both pdflib_pl.dll and pdflib_pl.pm will be searched in the current directory,
or the directory printed by the following Perl command:

perl -e "use Config; print $Config{sitearchexp};"

Typical output of the above command looks like

C:\Program Files\Perl5.8\site\lib

2.8.2 The »Hello world« Example in Perl
use pdflib_pl 5.0.0;

$p = PDF_new();

die "Couldn't open PDF file" if (PDF_open_file($p, "hello_pl.pdf") == -1);

PDF_set_info($p, "Creator", "hello.pl");
PDF_set_info($p, "Author", "Thomas Merz");
PDF_set_info($p, "Title", "Hello world (Perl)");

PDF_begin_page($p, 595, 842);

1. See http://www.perl.com
2. See http://www.activestate.com

http://www.perl.com
http://www.activestate.com

28 Chapter 2: PDFlib Language Bindings

$font = PDF_load_font($p, "Helvetica-Bold", "host", "");

PDF_setfont($p, $font, 18.0);

PDF_set_text_pos($p, 50, 700);
PDF_show($p, "Hello world!");
PDF_continue_text($p, "(says Perl)");
PDF_end_page($p);
PDF_close($p);

PDF_delete($p);

2.8.3 Error Handling in Perl
The Perl binding installs a special error handler which translates PDFlib errors to native
Perl exceptions. The Perl exceptions can be dealt with by applying the appropriate lan-
guage constructs, i.e., by bracketing critical sections:

eval {
...some PDFlib instructions...

};
die "Exception caught" if $@;

2.9 PHP Binding
2.9.1 Installing the PDFlib PHP Edition

Detailed information about the various flavors and options for using PDFlib with PHP1,
including the question of whether or not to use a loadable PDFlib module for PHP, can
be found in the readme.txt file which is part of the PDFlib source code and binary distri-
butions.

Note We do not recommend using the PDFlib COM edition with PHP. Use the native PDFlib binding
for PHP instead which is discussed below.

You must configure PHP so that it knows about the external PDFlib library. You have
two choices:
> Add one of the following lines in php.ini:

extension=libpdf_php.so ; for Unix
extension=php_pdf.dll ; for Windows

PHP will search the library in the directory specified in the extension_dir variable in
php.ini on Unix, and in the standard system directories on Windows. You can test
which version of the PHP PDFlib binding you have installed with the following one-
line PHP script:

<?phpinfo()?>

This will display a long info page about your current PHP configuration. On this page
check the section titled pdf. If this section contains PDFlib GmbH Version (and the
PDFlib version number) you are using the supported new PDFlib wrapper. The un-
supported old wrapper will display PDFlib Version instead.

> Load PDFlib at runtime with one of the following lines at the start of your script:

1. See http://www.php.net

http://www.php.net

2.9 PHP Binding 29

dl("libpdf_php.so"); # for Unix
dl("php_pdf.dll"); # for Windows

Modified error return for PDFlib functions in PHP. Since PHP uses the convention of re-
turning the value 0 (FALSE) when an error occurs within a function, all PDFlib functions
have been adjusted to return 0 instead of -1 in case of an error. This difference is noted
in the function descriptions in Section 7, »PDFlib and PDI API Reference«, page 131. How-
ever, take care when reading the code fragment examples in Section 3, »PDFlib Program-
ming«, page 37 since these use the usual PDFlib convention of returning -1 in case of an
error.

2.9.2 The »Hello world« Example in PHP
<?php
$p = PDF_new();
PDF_open_file($p, "");

PDF_set_info($p, "Creator", "hello.php");
PDF_set_info($p, "Author", "Rainer Schaaf");
PDF_set_info($p, "Title", "Hello world (PHP)");

PDF_begin_page($p, 595, 842); /* start a new page */

Change "host" encoding to "winansi" or whatever you need!
$font = PDF_load_font($p, "Helvetica-Bold", "host", "");
PDF_setfont($p, $font, 24.0);

PDF_set_text_pos($p, 50, 700);
PDF_show($p, "Hello world!");
PDF_continue_text($p, "(says PHP)");

PDF_end_page($p); /* close page*/
PDF_close($p); /* close PDF document*/

$buf = PDF_get_buffer($p);
$len = strlen($buf);

header("Content-type: application/pdf");
header("Content-Length: $len");
header("Content-Disposition: inline; filename=hello.pdf");
print $buf;

PDF_delete($p); /* delete the PDFlib object */
?>

2.9.3 Error Handling in PHP
When a PDFlib exception occurs, a PHP exception is thrown. Unfortunately, PHP does
not yet support structured exception handling: there is no way to catch exceptions and
act appropriately. Do not disable PHP exceptions when using PDFlib, or you will run
into serious trouble.

PDFlib warnings (nonfatal errors) are mapped to PHP warnings, which can be dis-
abled in php.ini. Alternatively, warnings can be disabled at runtime with a PDFlib func-
tion like in any other language binding:

PDF_set_parameter($p, "warning", "false");

30 Chapter 2: PDFlib Language Bindings

2.10 Python Binding
2.10.1 Installing the PDFlib Python Edition

The Python1 extension mechanism works by loading shared libraries at runtime. For the
PDFlib binding to work, the Python interpreter must have access to the PDFlib Python
wrapper:

Unix. The library pdflib_py.so will be searched in the directories listed in the PYTHON-
PATH environment variable.

Windows. The library pdflib_py.dll will be searched in the directories listed in the PY-
THONPATH environment variable.

2.10.2 The »Hello world« Example in Python
from sys import *
from pdflib_py import *

p = PDF_new()

if PDF_open_file(p, "hello_py.pdf") == -1:
print "Couldn't open PDF file 'hello_py.pdf'\n"
exit(2);

PDF_set_info(p, "Author", "Thomas Merz")
PDF_set_info(p, "Creator", "hello.py")
PDF_set_info(p, "Title", "Hello world (Python)")

PDF_begin_page(p, 595, 842)
font = PDF_load_font(p, "Helvetica-Bold", "host", "")

PDF_setfont(p, font, 18.0)

PDF_set_text_pos(p, 50, 700)
PDF_show(p, "Hello world!")
PDF_continue_text(p, "(says Python)")
PDF_end_page(p)
PDF_close(p)

PDF_delete(p);

2.10.3 Error Handling in Python
The Python binding installs a special error handler which translates PDFlib errors to na-
tive Python exceptions. The Python exceptions can be dealt with by the usual try/catch
technique:

try:
...some PDFlib instructions...

except:
print 'Exception caught!'

1. See http://www.python.org

http://www.python.org

2.11 RPG Binding 31

2.11 RPG Binding
PDFlib provides a /copy module that defines all prototypes and some useful constants
needed to compile ILE-RPG programs with embedded PDFlib functions.

Since all functions provided by PDFlib are implemented in the C language, you have
to add x'00' at the end of each string value passed to a PDFlib function. All strings re-
turned from PDFlib will have this terminating x'00' as well.

2.11.1 Compiling and Binding RPG Programs for PDFlib
Using PDFlib functions from RPG requires the compiled PDFlib service program. To in-
clude the PDFlib definitions at compile time you have to specify the name in the D
specs of your ILE-RPG program:

d/copy QRPGLESRC,PDFLIB

If the PDFlib source file library is not on top of your library list you have to specify the li-
brary as well:

d/copy PDFsrclib/QRPGLESRC,PDFLIB

Before you start compiling your ILE-RPG program you have to create a binding directory
that includes the PDFLIB service program shipped with PDFlib. The following example
assumes that you want to create a binding directory called PDFLIB in the library PDFLIB:

CRTBNDDIR BNDDIR(PDFLIB/PDFLIB) TEXT('PDFlib Binding Directory')

After creating the binding directory you need to add the PDFLIB service program to your
binding directory. The following example assumes that you want to add the service pro-
gram PDFLIB in the library PDFLIB to the binding directory created earlier.

ADDBNDDIRE BNDDIR(PDFLIB/PDFLIB) OBJ((PDFLIB/PDFLIB *SRVPGM))

Now you can compile your program using the CRTBNDRPG command (or option 14 in
PDM):

CRTBNDRPG PGM(PDFLIB/HELLO) SRCFILE(PDFLIB/QRPGLESRC) SRCMBR(*PGM) DFTACTGRP(*NO)
BNDDIR(PDFLIB/PDFLIB)

2.11.2 The »Hello world« Example in RPG

 d/copy QRPGLESRC,PDFLIB

 d p S *
 d font s 10i 0
 *
 d error s 50
 *
 d filename s 256
 d fontname s 50
 d fontenc s 50
 d infokey s 50
 d infoval s 200
 d text s 200
 d n s 1 inz(x'00')

32 Chapter 2: PDFlib Language Bindings

 c clear error
 *
 * Init on PDFlib
 c eval p=pdf_new
 c if p=*null
 c eval error='Couldn''t create PDFlib object '+
 c '(out of memory)!'
 c exsr exit
 c endif
 *
 * Open new pdf file
 c eval filename='hello_rpg.pdf'+x'00'
 c if PDF_open_file(p:filename) = -1
 c eval error='Cannot open PDF file '+
 c %trim(filename)
 c exsr exit
 c endif
 * Set info "Creator"
 c eval infokey='Creator'+x'00'
 c eval infoval='hello.rpg'+x'00'
 c callp PDF_set_info(p:infokey:infoval)
 * Set info "Author"
 c eval infokey='Author'+x'00'
 c eval infoval='Thomas Merz'+x'00'
 c callp PDF_set_info(p:infokey:infoval)
 * Set info "Title"
 c eval infokey='Title'+x'00'
 c eval infoval='Hello, world (RPG)!'+x'00'
 c callp PDF_set_info(p:infokey:infoval)
 * Start a new page
 c callp PDF_begin_page(p:a4_width:a4_height)
 *
 c eval fontname='Helvetica-Bold'+x'00'
 * Change "host" encoding to "ebcdic" or whatever you need!
 c eval fontenc='host'+x'00'
 c eval font=PDF_load_font(p:fontname:0:fontenc:n)
 *
 c callp PDF_setfont(p:font:24)
 c callp PDF_set_text_pos(p:50:700)
 *
 c eval text='Hello world!'+x'00'
 c callp PDF_show(p:text)
 c eval text='(says ILE RPG)'+x'00'
 c callp PDF_continue_text(p:text)
 * Close page
 c callp PDF_end_page(p)
 * Close PDF document
 c callp PDF_close(p)
 * Delete the PDF object
 c callp PDF_delete(p)
 *
 c exsr exit

 c exit begsr
 c if error<>*blanks
 c error dsply
 c endif

2.11 RPG Binding 33

 c seton lr
 c return
 c endsr

You can compile this program as follows:

CRTBNDDIR BNDDIR(PDFLIB/PDFLIB) TEXT('PDFlib Binding Directory')
ADDBNDDIRE BNDDIR(PDFLIB/PDFLIB) OBJ((PDFLIB/PDFLIB *SRVPGM))
CRTBNDRPG PGM(PDFLIB/HELLO) SRCFILE(PDFLIB/QRPGLESRC) SRCMBR(*PGM) DFTACTGRP(*NO) +

BNDDIR(PDFLIB/PDFLIB)

2.11.3 Error Handling in RPG
PDFlib clients written in ILE-RPG can install an error handler in PDFlib which will be ac-
tivated when an exception occurs. Since ILE-RPG translates all procedure names to up-
percase, the name of the error handler procedure should be specified in uppercase. The
following skeleton demonstrates this technique:

 d/copy QRPGLESRC,PDFLIB

 d p S *
 d font s 10i 0
 *
 d error s 50
 *
 d errhdl s * procptr
 *
 * Prototype for exception handling procedure
 *
 d errhandler PR
 d p * value
 d type 10i 0 value
 d shortmsg 2048

 c clear error
 *
* Set the procedure pointer to the ERRHANDLER procedure.
*
 c eval errhdl=%paddr('ERRHANDLER')
 *
 c eval p=pdf_new2(errhdl:*null:*null:*null:*null)

...PDFlib instructions...

c callp PDF_delete(p)
 *
 c exsr exit

 c exit begsr
 c if error<>*blanks
 c error dsply
 c endif
 c seton lr
 c return
 c endsr

 * If any of the PDFlib functions will cause an exception, first the error handler

34 Chapter 2: PDFlib Language Bindings

 * will be called and after that we will get a regular RPG exception.
 c *pssr begsr
 c exsr exit
 c endsr

 * Exception Handler Procedure
 * This procedure will be linked to PDFlib by passing the procedure pointer to
 * PDF_new2. This procedure will be called when a PDFlib exception occurs.
 *

 p errhandler B
 d errhandler PI
 d p * value
 d type 10i 0 value
 d c_message 2048
 *
 d length s 10i 0
 *
 * Chop off the trailing x'00' (we are called by a C program)
 * and set the error (global) string
 c clear error
 c x'00' scan c_message length 50
 c sub 1 length
 c if *in50 and length>0
 c if length>%size(error)
 c eval error=c_message
 c else
 c eval error=%subst(c_message:1:length)
 c endif
 c endif
 *
 * Always call PDF_delete to clean up PDFlib
 c callp PDF_delete(p)
 *
 c return
 *
 p errhandler E

2.12 Tcl Binding
2.12.1 Installing the PDFlib Tcl Edition

The Tcl 1extension mechanism works by loading shared libraries at runtime. For the
PDFlib binding to work, the Tcl shell must have access to the PDFlib Tcl wrapper shared
library and the package index file pkgIndex.tcl. You can use the following idiom in your
script to make the library available from a certain directory (this may be useful if you
want to deploy PDFlib on a machine where you don’t have root privilege for installing
PDFlib):

lappend auto_path /path/to/pdflib

Unix. The library pdflib_tcl.so must be placed in one of the default locations for shared
libraries, or in an appropriately configured directory. Usually both pkgIndex.tcl and
pdflib_tcl.so will be placed in the directory

1. See http://dev.scriptics.com

http://dev.scriptics.com

2.12 Tcl Binding 35

/usr/lib/tcl8.3/pdflib

Windows. The files pkgIndex.tcl and pdflib_tcl.dll will be searched for in the directories

C:\Program Files\Tcl\lib\pdflib
C:\Program Files\Tcl\lib\tcl8.3\pdflib

2.12.2 The »Hello world« Example in Tcl
package require pdflib 5.0.0

set p [PDF_new]

if {[PDF_open_file $p "hello_tcl.pdf"] == -1} {
 puts stderr "Couldn't open PDF file!"
 exit
}

PDF_set_info $p "Creator" "hello.tcl"
PDF_set_info $p "Author" "Thomas Merz"
PDF_set_info $p "Title" "Hello world (Tcl)"

PDF_begin_page $p 595 842
set font [PDF_load_font $p "Helvetica-Bold" "host" ""]

PDF_setfont $p $font 18.0

PDF_set_text_pos $p 50 700
PDF_show $p "Hello world!"
PDF_continue_text $p "(says Tcl)"
PDF_end_page $p
PDF_close $p

PDF_delete $p

2.12.3 Error Handling in Tcl
The Tcl binding installs a special error handler which translates PDFlib errors to native
Tcl exceptions. The Tcl exceptions can be dealt with by the usual try/catch technique:

if [catch { ...some PDFlib instructions... } result] {
puts stderr "Exception caught!"
puts stderr $result

}

36 Chapter 2: PDFlib Language Bindings

3.1 General Programming 37

3 PDFlib Programming

3.1 General Programming
3.1.1 PDFlib Program Structure and Function Scopes

PDFlib applications must obey certain structural rules which are very easy to under-
stand. Writing applications according to these restrictions is straightforward. For exam-
ple, you don’t have to think about opening a document first before closing it. Since the
PDFlib API is very closely modelled after the document/page paradigm, generating doc-
uments the »natural« way usually leads to well-formed PDFlib client programs.

PDFlib enforces correct ordering of function calls with a strict scoping system. The
function descriptions document the allowed scope for a particular function. Calling a
function from a different scope will trigger a PDFlib exception. PDFlib will also throw an
exception if bad parameters are supplied by a library client.

The function descriptions in Chapter 7 reference these scopes; the scope definitions
can be found in Table 3.1. Figure 3.1 depicts the nesting of scopes. PDFlib will throw an
exception if a function is called outside the allowed scope. You can query the current
scope with the scope parameter.

3.1.2 Parameters
PDFlib’s operation can be controlled by a variety of global parameters. These will retain
their settings across the lifespan of the PDFlib object, or until they are explicitly
changed by the client. The functions can be used for dealing with PDFlib parameters:
> PDF_set_parameter() can be used to set parameters of type string.
> PDF_set_value() can be used to set parameters with numerical values.
> PDF_get_parameter() can be used to query parameters of type string.
> PDF_get_value() can be used to query the values of numerical parameters.

Details of parameter names and possible values can be found in Chapter 7.

Table 3.1 Function scope definitions

scope name definition
path started by one of PDF_moveto(), PDF_circle(), PDF_arc(), PDF_arcn(), or PDF_rect()

terminated by any of the functions in Section 7.4.6, »Path Painting and Clipping«, page 163
page between PDF_begin_page() and PDF_end_page(), but outside of path scope
template between PDF_begin_template() and PDF_end_template(), but outside of path scope
pattern between PDF_begin_pattern() and PDF_end_pattern(), but outside of path scope
font between PDF_begin_font() and PDF_end_font(), but outside of glyph scope
glyph between PDF_begin_glyph() and PDF_end_glyph(), but outside of path scope
document between PDF_open_*() and PDF_close(), but outside of page, template, and pattern scope
object in Java: the lifetime of the pdflib object, but outside of document scope;

in other bindings between PDF_new() and PDF_delete(), but outside of document scope
null outside of object scope
any when a function description mentions »any« scope it actually means any except null, since a

PDFlib object doesn’t even exist in null scope.

38 Chapter 3: PDFlib Programming

3.1.3 Exception Handling
Errors of a certain kind are called exceptions in many languages for good reasons – they
are mere exceptions, and are not expected to occur very often during the lifetime of a
program. The general strategy is to use conventional error reporting mechanisms (read:
special error return codes) for function calls which may go wrong often times, and use a
special exception mechanism for those rare occasions which don’t warrant cluttering
the code with conditionals. This is exactly the path that PDFlib goes: Some operations
can be expected to go wrong rather frequently, for example:
> Trying to open an output file for which one doesn’t have permission
> Using a font for which metrics information cannot be found
> Trying to open a corrupt image file

PDFlib signals such errors by returning a special value (usually – 1, but 0 in the PHP
binding) as documented in the API reference. Other events may be considered harmful,
but will occur rather infrequently, e.g.
> running out of virtual memory
> scope violations (e.g., closing a document before opening it)
> supplying wrong parameters to PDFlib API functions (e.g., trying to draw a circle with

a negative radius)

When PDFlib detects such a situation, an exception will be thrown instead of passing a
special error return value to the caller. In the C programming language, which doesn’t
natively support exceptions, the client can install a custom routine (called an error han-
dler) which will be called in case of an exception. However, the recommended method is
to make use of PDF_TRY()/PDF_CATCH() blocks as detailed in Section 2.4.4, »Error Han-
dling in C«, page 20.

page page page page

pathpath

template pattern

document

. . .

. . .

objectnull

path path

page page page page

pathpath

template pattern

document

. . .

path path

Fig. 3.1
Nesting of scopes

3.1 General Programming 39

It is important to understand that the generated PDF document cannot be finished
after an exception occurred. The only method which can safely be called after an excep-
tion is PDF_delete(). In the C language binding PDF_get_apiname(), PDF_get_errnum(),
and PDF_get_errmsg() may also be called. Calling any other PDFlib methods after an ex-
ception may lead to unexpected results. The exception (or data passed to the C error
handler) will contain the following information:
> A unique error number (see Table 3.2);
> The name of the PDFlib API function which caused the exception;
> A descriptive text containing details of the problem;

C language clients can fetch this information using dedicated functions (PDF_get_
errnum(), PDF_get_apiname(), and PDF_get_errmsg()), while in other languages it will be
part of the exception object.

Disabling exceptions. Some exceptions can be disabled. These fall into two categories:
non-fatal errors (warnings) and errors which may or may not justify an exception de-
pending on client preferences.

Warnings generally indicate some problem in your PDFlib code which you should in-
vestigate more closely. However, processing may continue in case of non-fatal errors.
For this reason, you can suppress warnings using the following function call:

PDF_set_parameter(p, "warning", "false");

The suggested strategy is to enable warnings during the development cycle (and closely
examine possible warnings), and disable warnings in a production system.

Certain operations may be considered fatal for some clients, while others are pre-
pared to deal with the situation. In these cases the behavior of the respective PDFlib API
function changes according to a parameter. This distinction is implemented for loading
fonts, images, PDF import documents, and ICC profiles. For example, if a font cannot be
loaded due to some configuration problem one client may simply give up, while anoth-
er may choose another font instead. When the parameter fontwarning is set to true, an
exception will be thrown when the font cannot be loaded. Otherwise the function will
return an error code instead. The parameter can be set as follows:

PDF_set_parameter(p, "fontwarning", "false");

3.1.4 Option Lists
Option lists are a powerful yet easy method to control PDFlib operations. Instead of re-
quiring a multitude of function parameters, many PDFlib API methods support option
lists, or optlists for short. These are strings which may contain an arbitrary number of
options. Optlists support various data types and composite data like arrays. In most lan-

Table 3.2 Ranges of PDFlib exception numbers

error ranges reasons
1000 – 1999 (PDCORE library): memory, I/O, arguments, parameters/values, options
2000 – 2999 (PDFlib library): configuration, scoping, graphics and text, color, images, fonts, encodings, hyper-

text, PDF/X
3000 – 3999 (reserved)
4000 – 4999 (PDF import library PDI): configuration and parameter, corrupt PDF (file, object, or stream level)

40 Chapter 3: PDFlib Programming

guages optlists can easily be constructed by concatenating the required keywords and
values. C programmers may want to use the sprintf() function in order to construct
optlists. An optlist is a string containing one or more pairs of the form

name value(s)

Names and values, as well as multiple name/value pairs can be separated by arbitrary
whitespace characters (space, tab, carriage return, newline) and/or an equal sign ’=’.
Simple values may use any of the following data types:
> Boolean: true or false; if the value of a boolean option is omitted the value true is as-

sumed. As a shorthand notation noname can be used instead of name false.
> String: strings containing whitespace must be bracketed with { and }. An empty

string can be constructed with { }. The characters {, }, and \ must be preceded by a an
additional \ character if they are supposed to be part of the string.

> Keyword: one of a predefined list of fixed keywords
> Float and integer: decimal floating point or integer numbers; point and comma can

be used as decimal separators.
> Handle: several PDFlib-internal object handles, e.g., font handles, image handles.

Options can have list values, i.e., a group of multiple simple values. Lists are bracketed
with { and }, for example

dasharray {11 22 33}

Depending on the type and interpretation of an option additional restrictions may ap-
ply. For example, integer or float options may be restricted to a certain range of values;
handles must be valid for the corresponding type of object, etc. Conditions for options
are documented in their respective descriptions.

The following lines contain examples of option lists for various PDFlib functions
which support option lists (see Chapter 7 for details on available options):

PDF_fit_image(): boxsize {500 600} position 50 fitmethod nofit scale .5
PDF_load_font(): embedding=true subsetting=true subsetlimit=50 kerning=false
PDF_load_font(): embedding subsetting subsetlimit=50 nokerning
PDF_open_pdi(): password {secret string}
PDF_create_gstate(): linewidth 0.5 blendmode overlay opacityfill 0.75

3.1.5 The PDFlib Virtual File System (PVF)
In addition to disk files a facility called PDFlib Virtual File System (PVF) allows clients to di-
rectly supply data in memory without any disk files involved. This offers performance
benefits and can be used for data fetched from a database which does not even exist on
an isolated disk file, as well as other situations where the client already has the required
data available in memory as a result of some processing.

PVF is based on the concept of named virtual read-only files which can be used just
like regular file names with any API function which accepts PVF names. They can even
be used in UPR configuration files. Virtual file names can be generated in an arbitrary
way by the client. Obviously, virtual file names must be chosen such that name clashes
with regular disk files are avoided. For this reason a hierarchical naming convention for
virtual file names is recommended as follows (filename refers to a name chosen by the
client which is unique in the respective category). It is also recommended to keep stan-
dard file name suffixes:

3.1 General Programming 41

> Raster image files: /pvf/image/filename
> font outline and metrics files (it is recommended to use the actual font name as the

base portion of the file name): /pvf/font/filename
> ICC profiles: /pvf/iccprofile/filename
> Encodings and codepages: /pvf/codepage/filename
> PDF documents: /pvf/pdf/filename

When searching for a named file PDFlib will first check whether the supplied file name
refers to a known virtual file, and then try to open the named file on disk.

Lifetime of virtual files. Some functions will immediately consume the data supplied
in a virtual file, while others will read only parts of the file, with other fragments being
used at a later point in time. For this reason close attention must be paid to the lifetime
of virtual files. PDFlib will place an internal lock on every virtual file, and remove the
lock only when the contents are no longer needed. Unless the client requested to make
an immediate copy of the data (using the copy option in PDF_create_pvf()), the virtual
file’s contents must only be modified, deleted, or freed by the client when it is no longer
locked by PDFlib. PDFlib will automatically delete all virtual files in PDF_delete(). How-
ever, the actual file contents (the data comprising a virtual file) must always be freed by
the client.

Different strategies. PVF supports different approaches with respect to managing the
memory required for virtual files. These are governed by the fact that PDFlib may need
access to a virtual file’s contents after the API call which accepted the virtual file name,
but never needs access to the contents after PDF_close(). Remember that calling PDF_
delete_pvf() does not free the actual file contents (unless the copy option has been sup-
plied), but only the corresponding data structures used for PVF file name administra-
tion. This gives rise to the following strategies:
> Minimize memory usage: it is recommended to call PDF_delete_pvf() immediately af-

ter the API call which accepted the virtual file name, and another time after PDF_
close(). The second call is required because PDFlib may still need access to the data so
that the first call refuses to unlock the virtual file. However, in some cases the first
call will already free the data, and the second call doesn’t do any harm. The client
may free the file contents only when PDF_delete_pvf() succeeded.

> Optimize performance by reusing virtual files: some clients may wish to reuse some
data (e.g., font definitions) within various output documents, and avoid multiple
create/delete cycles for the same file contents. In this case it is recommended not to
call PDF_delete_pvf() as long as more PDF output documents using the virtual file
will be generated.

> Lazy programming: if memory usage is not a concern the client may elect not to call
PDF_delete_pvf() at all. In this case PDFlib will internally delete all pending virtual
files in PDF_delete().

In all cases the client may free the corresponding data only when PDF_delete_pvf() re-
turned successfully, or after PDF_delete().

3.1.6 Resource Configuration and File Searching
In most advanced applications PDFlib needs access to resources such as font file, encod-
ing definition, ICC color profiles, etc. In order to make PDFlib’s resource handling plat-

42 Chapter 3: PDFlib Programming

form-independent and customizable, a configuration file can be supplied for describing
the available resources along with the names of their corresponding disk files. In addi-
tion to a static configuration file, dynamic configuration can be accomplished at run-
time by adding resources with PDF_set_parameter(). For the configuration file we dug
out a simple text format called Unix PostScript Resource (UPR) which came to life in the
era of Display PostScript, and is still in use on several systems. However, we extended
the original UPR format for our purposes. The UPR file format as used by PDFlib will be
described below. There is a utility called makepsres (often distributed as part of the X
Window System) which can be used to automatically generate UPR files from PostScript
font outline and metrics files.

Resource categories. The resource categories supported by PDFlib are listed in Table
3.3. Other resource categories may be present in the UPR file for compatibility with Dis-
play PostScript installations, but they will silently be ignored.

Redundant resource entries should be avoided. For example, do not include multiple
entries for a certain font’s metrics data. Also, the font name as configured in the UPR file
should exactly match the actual font name in order to avoid confusion (although
PDFlib does not enforce this restriction).

In Mac OS Classic the colon character ’:’ must be used as a directory separator. The
font names of resource-based PostScript Type 1 fonts (LWFN fonts) must be specified us-
ing the full path including volume name, for example:

Foo-Italic=Classic:Data:Fonts:FooIta

The UPR file format. UPR files are text files with a very simple structure that can easily
be written in a text editor or generated automatically. To start with, let’s take a look at
some syntactical issues:
> Lines can have a maximum of 255 characters.
> A backslash ’\’ escapes any character, including newline characters. This may be used

to extend lines. Windows directory names must be separated by double backslashes
’\\’ or a single forward slash ’/’.

> The period character ’ . ’ serves as a section terminator, and must therefore be es-
caped when used at the start of any other line.

> All entries are case-sensitive.

Table 3.3 Resource categories supported in PDFlib

resource category name explanation
SearchPath Relative or absolute path name of directories containing data files
FontAFM PostScript font metrics file in AFM format
FontPFM PostScript font metrics file in PFM format
FontOutline PostScript, TrueType or OpenType font outline file
Encoding text file containing an 8-bit encoding or code page table
HostFont name of a font installed on the system1

1. Resources in this category do not necessarily require any value.

ICCProfile name of an ICC color profile1

StandardOutputIntent name of a standard output condition for PDF/X

3.1 General Programming 43

> Comment lines may be introduced with a percent ’%’ character, and terminated by
the end of the line.

> Whitespace is ignored everywhere except in resource names and file names.

UPR files consist of the following components:
> A magic line for identifying the file. It has the following form:

PS-Resources-1.0

> A section listing all types of resource categories described in the file. Each line de-
scribes one resource category. The list is terminated by a line with a single period
character. Available resource categories are described below. This section exists for
compatibility only, and is ignored by PDFlib.

> A section for each of the resource categories listed at the beginning of the file. Each
section starts with a line showing the resource category, followed by an arbitrary
number of lines describing available resources. The list is terminated by a line with a
single period character. Each resource data line contains the name of the resource
(equal signs have to be quoted). If the resource requires a file name, this name has to
be added after an equal sign. The SearchPath (see below) will be applied when PDFlib
searches for files listed in resource entries.

File searching and the SearchPath resource category. PDFlib reads a variety of data
items, such as raster images, font outline and metrics information, encoding defini-
tions, PDF documents, and ICC color profiles from disk files. In addition to relative or ab-
solute path names you can also use file names without any path specification. The
SearchPath resource category can be used to specify a list of path names for directories
containing the required data files. When PDFlib must open a file it will first use the file
name exactly as supplied and try to open the file. If this attempt fails PDFlib will try to
open the file in the directories specified in the SearchPath resource category one after
another until it succeeds. SearchPath entries can be accumulated, and will be searched in
reverse order (paths set at a later point in time will searched before earlier ones). This
feature can be used to separate the PDFlib application from platform-specific file sys-
tem schemes. In order to disable the search you can use a fully specified path name.

On Windows PDFlib will initialize the SearchPath resource category with an entry
read from the following registry entry:

HKLM\SOFTWARE\PDFlib\PDFlib\5.0.0\SearchPath

This registry entry may contain a list of path names separated by a semicolon ’;’ char-
acter.

Sample UPR file. The following listing gives an example of a UPR configuration file as
used by PDFlib. It describes some font metrics and outline files plus a custom encoding:

PS-Resources-1.0
FontAFM
FontPFM
FontOutline
Encoding
.
% do not mix old-style prefix and SearchPath entries
SearchPath
/usr/local/lib/fonts

44 Chapter 3: PDFlib Programming

Classic:Data:Fonts
C:/psfonts/pfm
C:/psfonts
/users/kurt/my_images
.
FontAFM
Code-128=Code_128.afm
.
FontPFM
Foobar-Bold=foobb___.pfm
% Example for an absolute path name with the prefix not applied
Mistral==c:/psfonts/pfm/mist____.pfm
.
FontOutline
Code-128=Code_128.pfa
ArialMT=Arial.ttf
.
Encoding
myencoding=myencoding.enc
.
ICCProfile
highspeedprinter=cmykhighspeed.icc
.

Searching for the UPR resource file. If only the built-in resources (e.g., PDF core font,
built-in encodings, sRGB ICC profile) or system resources (host fonts) are to be used, a
UPR configuration file is not required, since PDFlib will find all necessary resources
without any additional configuration.

If other resources are to be used you can specify such resources via calls to PDF_set_
parameter() (see below) or in a UPR resource file. PDFlib reads this file automatically
when the first resource is requested. The detailed process is as follows:
> If the environment variable PDFLIBRESOURCE is defined PDFlib takes its value as the

name of the UPR file to be read. If this file cannot be read an exception will be
thrown.

> If the environment variable PDFLIBRESOURCE is not defined PDFlib tries to open a file
with the following name:

upr (on MVS; a dataset is expected)

pdflib/<version>/fonts/pdflib.upr (on IBM eServer iSeries)

pdflib.upr (Windows, Unix, and all other systems)

If this file cannot be read no exception will be thrown.
> On Windows PDFlib will additionally try to read the registry entry

HKLM\SOFTWARE\PDFlib\PDFlib\5.0.0\resourcefile

The value of this entry (which will be created by the PDFlib installer, but can also be
created by other means) will be taken as the name of the resource file to be used. If
this file cannot be read an exception will be thrown.

> The client can force PDFlib to read a resource file at runtime by explicitly setting the
resourcefile parameter:

PDF_set_parameter(p, "resourcefile", "/path/to/pdflib.upr");

This call can be repeated arbitrarily often; the resource entries will be accumulated.

3.1 General Programming 45

Configuring resources at runtime. In addition to using a UPR file for the configuration,
it is also possible to directly configure individual resources within the source code via
the PDF_set_parameter() function. This function takes a category name and a corre-
sponding resource entry as it would appear in the respective section of this category in
a UPR resource file, for example:

PDF_set_parameter(p, "FontAFM", "Foobar-Bold=foobb___.afm")
PDF_set_parameter(p, "FontOutline", "Foobar-Bold=foobb___.pfa")

3.1.7 Generating PDF Documents in Memory
In addition to generating PDF documents on a file, PDFlib can also be instructed to gen-
erate the PDF directly in memory (in-core). This technique offers performance benefits
since no disk-based I/O is involved, and the PDF document can, for example, directly be
streamed via HTTP. Webmasters will be especially happy to hear that their server will
not be cluttered with temporary PDF files. Unix users can write the generated PDF to the
stdout channel and consume it in a pipe process by supplying »–« as filename for PDF_
open_file().

You may, at your option, periodically collect partial data (e.g., every time a page has
been finished), or fetch the complete PDF document in one big chunk at the end (after
PDF_close()). Interleaving production and consumption of the PDF data has several ad-
vantages. Firstly, since not all data must be kept in memory, the memory requirements
are reduced. Secondly, such a scheme can boost performance since the first chunk of
data can be transmitted over a slow link while the next chunk is still being generated.
However, the total length of the generated data will only be known when the complete
document is finished.

The active in-core PDF generation interface. In order to generate PDF data in memory,
simply supply an empty filename to PDF_open_file(), and retrieve the data with PDF_
get_buffer():

PDF_open_file(p, "")
...create document...
PDF_close(p);

buf = PDF_get_buffer(p, &size);
... use the PDF data contained in the buffer ...
PDF_delete(p);

Note Fetching PDF data from a buffer requires binary access.

This is considered »active« mode since the client decides when he wishes to fetch the
buffer contents. Active mode is available for all supported language bindings.

Note C and C++ clients must not free the returned buffer.

The passive in-core PDF generation interface. In »passive« mode, which is only avail-
able in the C and C++ language bindings, the user installs (via PDF_open_mem()) a call-
back function which will be called at unpredictable times by PDFlib whenever PDF data
is waiting to be consumed. Timing and buffer size constraints related to flushing (trans-
ferring the PDF data from the library to the client) can be configured by the client in or-
der to provide for maximum flexibility. Depending on the environment, it may be ad-
vantageous to fetch the complete PDF document at once, in multiple chunks, or in

46 Chapter 3: PDFlib Programming

many small segments in order to prevent PDFlib from increasing the internal docu-
ment buffer. The flushing strategy can be set using PDF_set_parameter() and the flush
parameter values detailed in Table 3.4.

3.1.8 Using PDFlib on EBCDIC-based Platforms
The operators and structure elements in the PDF file format are based on ASCII, making
it difficult to mix text output and PDF operators on EBCDIC-based platforms such as
IBM eServer iSeries 400 and zSeries S/390. However, a special mainframe version of
PDFlib has been carefully crafted in order to allow mixing of ASCII-based PDF operators
and EBCDIC (or other) text output. The EBCDIC-safe version of PDFlib is available for
various operating systems and machine architectures.

In order to leverage PDFlib’s features on EBCDIC-based platforms the following items
are expected to be supplied in EBCDIC text format (more specifically, in code page 037
on iSeries, and code page 1047 on zSeries):
> PFA font files, UPR configuration files, AFM font metrics files
> encoding and code page files
> string parameters to PDFlib functions
> input and output file names
> environment variables (if supported by the runtime environment)
> PDFlib error messages will also be generated in EBCDIC format (except in Java).

If you prefer to use input text files (PFA, UPR, AFM, encodings) in ASCII format you can
set the asciifile parameter to true (default is false). PDFlib will then expect these files in
ASCII encoding. String parameters will still be expected in EBCDIC encoding, however.

In contrast, the following items must always be treated in binary mode (i.e., any con-
version must be avoided):
> PDF input and output files
> PFB font outline and PFM font metrics files
> TrueType and OpenType font files
> image files and ICC profiles

Table 3.4 Controlling PDFlib’s flushing strategy with the flush parameter

flush parameter flushing strategy benefits
none flush only once at the end of the

document
complete PDF document can be fetched by
the client in one chunk

page flush at the end of each page generating and fetching pages can be nicely
interleaved

content flush after all fonts, images, file
attachments, and pages

even better interleaving, since large items
won’t clog the buffer

heavy always flush when the internal 64
KB document buffer is full

PDFlib’s internal buffer will never grow
beyond a fixed size

3.2 Page Descriptions 47

3.2 Page Descriptions
3.2.1 Coordinate Systems

PDF’s default coordinate system is used within PDFlib. The default coordinate system
(or default user space) has the origin in the lower left corner of the page, and uses the
DTP point as unit:

1 pt = 1/72 inch = 25.4/72 mm = 0.3528 mm

The first coordinate increases to the right, the second coordinate increases upwards.
PDFlib client programs may change the default user space by rotating, scaling, translat-
ing, or skewing, resulting in new user coordinates. The respective functions for these
transformations are PDF_rotate(), PDF_scale(), PDF_translate(), and PDF_skew(). If the
user space has been transformed, all coordinates in graphics and text functions must be
supplied according to the new coordinate system. The coordinate system is reset to the
default coordinate system at the start of each page.

Coordinates for hypertext elements. PDF always expects coordinates for hypertext
functions, such as the rectangle coordinates for creating text annotations, links, and file
annotations in the default coordinate system, and not in the (possibly transformed)
user coordinate system. Since this is very cumbersome PDFlib offers automatic conver-
sion of user coordinates to the format expected by PDF. This automatic conversion is ac-
tivated by setting the usercoordinates parameter to true:

PDF_set_parameter(p, "usercoordinates", "true");

Since PDF supports only hypertext rectangles with edges parallel to the page edges, the
supplied rectangles must be modified when the coordinate system has been trans-
formed by scaling, rotating, translating, or skewing it. In this case PDFlib will calculate
the smallest enclosing rectangle with edges parallel to the page edges, transform it to
default coordinates, and use the resulting values instead of the supplied coordinates.

The overall effect is that you can use the same coordinate systems for both page con-
tent and hypertext elements when the usercoordinates parameter has been set to true.

Visualizing coordinates. In order to assist PDFlib users in working with PDF’s coordi-
nate system, the PDFlib distribution contains the PDF file grid.pdf which visualizes the
coordinates for several common page sizes. Printing the appropriately sized page on
transparent material may provide a useful tool for preparing PDFlib development.

Acrobat 5 (full version only, not the free Reader) also has a helpful facility. Simply
choose Window, Info to display a measurement palette which uses points as units. Note
that the coordinates displayed refer to an origin in the top left corner of the page, and
not PDF’s default origin in the lower left corner.

Don’t be mislead by PDF printouts which seem to experience wrong page dimen-
sions. These may be wrong because of some common reasons:
> The Shrink oversized pages to paper size option has been checked in Acrobat’s print dia-

log, resulting in scaled print output.
> Non-PostScript printer drivers are not always able to retain the exact size of printed

objects.

48 Chapter 3: PDFlib Programming

Using metric coordinates. Metric coordinates can easily be used by scaling the coor-
dinate system. The scaling factor is derived from the definition of the DTP point given
above:

PDF_scale(p, 28.3465, 28.3465);

After this call PDFlib will interpret all coordinates (except for hypertext features, see
above) in centimeters since 72/2.54 = 28.3465.

Rotating objects. It is important to understand that objects cannot be modified once
they have been drawn on the page. Although there are PDFlib functions for rotating,
translating, scaling, and skewing the coordinate system, these do not affect existing ob-
jects on the page but only subsequently drawn objects. Rotating text, images, and im-
ported PDF pages by multiples of 90˚ is accomplished very easily with the PDF_fit_
textline(), PDF_fit_image(), and PDF_fit_pdi_page() functions.

The following example generates some horizontal text, and rotates the coordinate
system in order to show rotated text. The save/restore nesting makes it easy to continue
with horizontal text in the original coordinate system after the vertical text is done:

PDF_set_text_pos(p, 50, 600);
PDF_show(p, "This is horizontal text");
textx = PDF_get_value(p, "textx", 0); /* determine text position*/
texty = PDF_get_value(p, "texty", 0); /* determine text position */

PDF_save(p);
PDF_translate(p, textx, texty); /* move origin to end of text */
PDF_rotate(p, 45); /* rotate coordinates */
PDF_set_text_pos(p, 18, 0); /* provide for distance from horiz. text */
PDF_show(p, "rotated text");

PDF_restore(p);

PDF_continue_text(p, "horizontal text continues");

Using top-down coordinates. Unlike PDF’s bottom-up coordinate system some graph-
ics environments use top-down coordinates which may be preferred by some develop-
ers. Such a coordinate system can easily be established using PDFlib’s transformation
functions. However, since the transformations will also affect text output additional
calls are required in order to avoid text being displayed in a mirrored sense.

In order to facilitate the use of top-down coordinates PDFlib supports a special mode
in which all relevant coordinates will be interpreted differently: instead of working with
the default PDF coordinate system, with the origin (0, 0) at the lower left corner of the
page and y coordinates increasing upwards, a modified coordinate system will be used
which has its origin at the upper left corner of the page with y coordinates increasing
downwards. This top-down coordinate system can be activated with the topdown pa-
rameter:

PDF_set_parameter(p, "topdown", "true")

A different coordinate system can be established for each page, but the topdown para-
meter must not be set within a page description (but only between pages). The topdown
feature has been designed to make it quite natural for PDFlib users to work in a top-
down coordinate system. For the sake of completeness we’ll list the detailed conse-
quences of establishing a top-down coordinate system below.

3.2 Page Descriptions 49

»Absolute« coordinates will be interpreted in the user coordinate system without
any modification:
> All function parameters which are designated as »coordinates« in the function de-

scriptions. Some examples: x, y in PDF_moveto(); x, y in PDF_circle(), x, y (but not width
and height!) in PDF_rect(); llx, lly, urx, ury in PDF_add_note()).

»Relative« coordinate values will be modified internally to match the top-down system:
> Text (with positive font size) will be oriented towards the top of the page;
> When the manual talks about »lower left« corner of a rectangle, box etc. this will be

interpreted as you see it on the page;
> When a rotation angle is specified the center of the rotation is still the origin (0, 0) of

the user coordinate system. The visual result of a clockwise rotation will still be
clockwise.

3.2.2 Page Sizes and Coordinate Limits

Standard page formats. For the convenience of PDFlib users, Table 3.5 lists common
standard page sizes1.

The PDFlib header file pdflib.h provides macro definitions for page width and height val-
ues for the most common page formats. These may be used in calls to PDF_begin_page().
They are called <format>_width, <format>_height, where <format> is one of the formats in
Table 3.5 (in lowercase).

Page size limits. Although PDF and PDFlib don’t impose any restrictions on the usable
page size, Acrobat implementations suffer from architectural limits regarding the page
size. Note that other PDF interpreters may well be able to deal with larger or smaller doc-
ument formats. PDFlib will throw a non-fatal warning message if Acrobat’s page size
limits are exceeded. The page size limits for Acrobat are shown in Table 3.6.

Different page size boxes. While many PDFlib developers only specify the width and
height of a page, some advanced applications (especially for prepress work) may want
to specify one or more of PDF’s additional box entries. PDFlib supports all of PDF’s box
entries. The following entries, which may be useful in certain environments, can be
specified by PDFlib clients (definitions taken from the PDF reference):

Table 3.5 Common standard page size dimensions in points

format width height format width height format width height
A0 2380 3368 A4 595 842 letter 612 792
A1 1684 2380 A5 421 595 legal 612 1008
A2 1190 1684 A6 297 421 ledger 1224 792
A3 842 1190 B5 501 709 11 x 17 792 1224

1. More information about ISO, Japanese, and U.S. standard formats can be found at the following URLs:
http://www.twics.com/~eds/paper/papersize.html, http://www.cl.cam.ac.uk/~mgk25/iso-paper.html

Table 3.6 Minimum and maximum page size of Acrobat

PDF viewer minimum page size maximum page size
Acrobat 4 and above 1/24" = 3 pt = 0.106 cm 200" = 14400 pt = 508 cm

http://www.twics.com/~eds/paper/papersize.html
http://www.cl.cam.ac.uk/~mgk25/iso-paper.html

50 Chapter 3: PDFlib Programming

> MediaBox: this is used to specify the width and height of a page, and describes what
we usually consider the page size.

> CropBox: the region to which the page contents are to be clipped; Acrobat uses this
size for screen display and printing.

> TrimBox: the intended dimensions of the finished (possibly cropped) page;
> ArtBox: extent of the page’s meaningful content. It is rarely used by application soft-

ware;
> BleedBox: the region to which the page contents are to be clipped when output in a

production environment. It may encompass additional bleed areas to account for in-
accuracies in the production process.

PDFlib will not use any of these values apart from recording it in the output file. By de-
fault PDFlib generates a MediaBox according to the specified width and height of the
page, but does not generate any of the other entries. The following code fragment will
start a new page and set the four values of the CropBox:

PDF_begin_page(p, 595, 842); /* start a new page */
PDF_set_value(p, "CropBox/llx", 10);
PDF_set_value(p, "CropBox/lly", 10);
PDF_set_value(p, "CropBox/urx", 500);
PDF_set_value(p, "CropBox/ury", 800);

Number of pages in a document. There is no limit in PDFlib regarding the number of
generated pages in a document. PDFlib generates PDF structures which allow Acrobat to
efficiently navigate documents with hundreds of thousands of pages.

Output accuracy and coordinate range. PDFlib’s numerical output accuracy has been
carefully chosen to match the requirements of PDF and the supported environments,
while at the same time minimizing output file size. As detailed in Table 3.7 PDFlib’s ac-
curacy depends on the absolute value of coordinates. While most developers may safely
ignore this issue, demanding applications should take care in their scaling operations
in order to not exceed PDF’s built-in coordinate limits.

3.2.3 Paths
A path is a shape made of an arbitrary number of straight lines, rectangles, or curves. A
path may consist of several disconnected sections, called subpaths. There are several
operations which can be applied to a path (see Section 7.4.6, »Path Painting and Clip-
ping«, page 163):
> Stroking draws a line along the path, using client-supplied parameters for drawing.
> Filling paints the entire region enclosed by the path, using client-supplied parame-

ters for filling.

Table 3.7 Output accuracy and coordinate range

absolute value output
0 ... 0.000015 0
0.000015 ... 32767.999999 rounded to four decimal digits
32768 ... 231- 1 rounded to next integer
>= 231 an exception will be raised

3.2 Page Descriptions 51

> Clipping reduces the imageable area for subsequent drawing operations by replacing
the current clipping area (which is the page size by default) with the intersection of
the current clipping area and the area enclosed by the path.

> Merely terminating the path results in an invisible path, which will nevertheless be
present in the PDF file. This will only rarely be required.

It is an error to construct a path without applying any of the above operations to it.
PDFlib’s scoping system ensures that clients obey to this restriction. These rules may
easily be summarized as »don’t change the appearance within a path description«.

Merely constructing a path doesn’t result in anything showing up on the page; you
must either fill or stroke the path in order to get visible results:

PDF_moveto(p, 100, 100);
PDF_lineto(p, 200, 100);
PDF_stroke(p);

Most graphics functions make use of the concept of a current point, which can be
thought of as the location of the pen used for drawing.

3.2.4 Templates

Templates in PDF. PDFlib supports a PDF feature with the technical name form
XObjects. However, since this term conflicts with interactive forms we refer to this fea-
ture as templates. A PDFlib template can be thought of as an off-page buffer into which
text, vector, and image operations are redirected (instead of acting on a regular page).
After the template is finished it can be used much like a raster image, and placed an ar-
bitrary number of times on arbitrary pages. Like images, templates can be subjected to
geometrical transformations such as scaling or skewing. When a template is used on
multiple pages (or multiply on the same page), the actual PDF operators for construct-
ing the template are only included once in the PDF file, thereby saving PDF output file
size. Templates suggest themselves for elements which appear repeatedly on several
pages, such as a constant background, a company logo, or graphical elements emitted
by CAD and geographical mapping software. Other typical examples for template usage
include crop and registration marks or custom Asian glyphs.

Note PDF templates are an efficient means for saving space in a PDF file. However, this advantage is
usually not retained when printing template-based PDF files to a PostScript printer. Depending
on the number of templates used, you should be prepared for print jobs which are significantly
larger than the corresponding PDF files.

Using templates with PDFlib. Templates can only be defined outside of a page descrip-
tion, and can be used within a page description. However, templates may also contain
other templates. Obviously, using a template within its own definition is not possible.
Referring to an already defined template on a page is achieved with the PDF_fit_image()
function just like images are placed on the page (see Section 5.3, »Placing Images and
Imported PDF Pages«, page 111). The general template idiom in PDFlib looks as follows:

/* define the template */
template = PDF_begin_template(p, template_width, template_height);
...place marks on the template using text, vector, and image functions...
PDF_end_template(p);
...

52 Chapter 3: PDFlib Programming

PDF_begin_page(p, page_width, page_height);
/* use the template */
PDF_fit_image(p, template, (float) 0.0, (float) 0.0, "");
...more page marking operations...
PDF_end_page(p);
...
PDF_close_image(p, template);

All text, graphics, and color functions can be used on a template. However, the follow-
ing functions must not be used while constructing a template:
> The functions in Section 7.6, »Image and Template Functions«, page 171, except PDF_

place_image(), PDF_fit_image(), and PDF_close_image(). This is not a big restriction
since images can be opened outside of a template definition, and freely be used
within a template (but not opened).

> The functions in Section 7.9, »Hypertext Functions«, page 186. Hypertext elements
must always be defined on the page where they should appear in the document, and
cannot be generated as part of a template.

Template support in third-party software. Templates (form XObjects) are an integral
part of the PDF specification, and can be perfectly viewed and printed with Acrobat.
However, not all PDF consumers are prepared to deal with this construct. For example,
the Acrobat plugin Enfocus PitStop 5 can only move templates, but cannot access indi-
vidual elements within a template. On the other hand, Adobe Illustrator 9 and 10 fully
support templates.

3.3 Working with Color 53

3.3 Working with Color
3.3.1 Color and Color Spaces

PDFlib clients may specify the colors used for filling and stroking the interior of paths
and text characters. Colors may be specified in several color spaces:
> Gray values between 0=black and 1=white;
> RGB triples, i.e., three values between 0 and 1 specifying the percentage of red, green,

and blue; (0, 0, 0)=black, (1, 1, 1)=white;
> Four CMYK values between 0=no color and 1=full color, representing cyan, magenta,

yellow, and black values; (0, 0, 0, 0)=white, (0, 0, 0, 1)=black. Note that this is different
from the RGB specification.

> Spot color (separation color space): an arbitrarily named color with an alternate re-
presentation in one of the other color spaces above; this is generally used for prepar-
ing documents which are intended to be printed on an offset printing machine with
one or more custom colors. The tint value (percentage) ranges from 0=no color to
1=maximum intensity of the spot color. See Section 3.3.3, »Spot Colors«, page 54, for a
list of spot color names.

> Device-independent colors in the CIE L*a*b* color space are specified by a luminance
value and two color values (see Section 3.3.6, »Device-Independent CIE L*a*b* Color«,
page 59).

> ICC-based colors are specified with the help of an ICC profile (see Section 3.3.4, »Color
Management and ICC Profiles«, page 57).

> Patterns: tiling with an object composed of arbitrary text, vector, or image graphics
(see Section 3.3.2, »Patterns and Smooth Shadings«, page 53).

> Shadings (smooth blends) provide a gradual transition between two colors, and are
based on another color space (see Section 3.3.2, »Patterns and Smooth Shadings«,
page 53).

> The indexed color space is a not really a color space on its own, but rather an efficient
coding of another color space. It will automatically be generated when an indexed
(palette-based) image is imported.

The default color for stroke and fill operations is black.

3.3.2 Patterns and Smooth Shadings
As an alternative to solid colors, patterns and shadings are special kinds of colors which
can be used to fill or stroke arbitrary objects.

Patterns. A pattern is defined by an arbitrary number of painting operations which
are grouped into a single entity. This group of objects can be used to fill or stroke arbi-
trary other objects by replicating (or tiling) the group over the entire area to be filled or
the path to be stroked. Working with patterns involves the following steps:
> First, the pattern must be defined between PDF_begin_pattern() and PDF_end_

pattern(). Most graphics operators can be used to define a pattern.
> The pattern handle returned by PDF_begin_pattern() can be used to set the pattern as

the current color using PDF_setcolor().

Depending on the painttype parameter of PDF_begin_pattern() the pattern definition
may or may not include its own color specification. If painttype is 1, the pattern defini-

54 Chapter 3: PDFlib Programming

tion must contain its own color specification and will always look the same; if painttype
is 2, the pattern definition must not include any color specification. Instead, the current
fill or stroke color will be applied when the pattern is used for filling or stroking.

Note Patterns can also be defined based on a smooth shading (see below).

Smooth shadings. Smooth shadings, also called color blends or gradients, provide a
continuous transition from one color to another. Both colors must be specified in the
same color space. PDFlib supports two different kinds of geometry for smooth shadings:
> axial shadings are defined along a line;
> radial shadings are defined between two circles.

Shadings are defined as a transition between two colors. The first color is always taken
to be the current fill color; the second color is provided in the c1, c2, c3, and c4 parameters
of PDF_shading(). These numerical values will be interpreted in the first color’s color
space according to the description of PDF_setcolor().

Calling PDF_shading() will return a handle to a shading object which can be used in
two ways:
> Fill an area with PDF_shfill(). This method can be used when the geometry of the ob-

ject to be filled is the same as the geometry of the shading. Contrary to its name this
function will not only fill the interior of the object, but also affects the exterior. This
behavior can be modified with PDF_clip().

> Define a shading pattern to be used for filling more complex objects. This involves
calling PDF_shading_pattern() to create a pattern based on the shading, and using this
pattern to fill or stroke arbitrary objects.

3.3.3 Spot Colors
PDFlib supports spot colors (technically known as Separation color space in PDF, al-
though the term separation is generally used with process colors, too) which can be
used to print custom colors outside the range of colors mixed from process colors. Spot
colors are specified by name, and in PDF are always accompanied by an alternate color
which closely, but not exactly, resembles the spot color. Acrobat will use the alternate
color for screen display and printing to devices which do not support spot colors (such
as office printers). On the printing press the requested spot color will be applied in addi-
tion to any process colors which may be used in the document. This requires the PDF
files to be post-processed by a process called color separation.

Note PDF color separation is outside the scope of PDFlib; additional software, such as the Acrobat
plugins callas pdfOutput PRO1, Lantana Crackerjack2, or in-RIP separation is required.

Note Some spot colors do not display correctly on screen in Acrobat 5 when Overprint Preview is
turned on. They can be separated and printed correctly, though.

PDFlib supports various built-in spot color libraries as well as custom (user-defined)
spot colors. When a spot color name is requested with PDF_makespotcolor() PDFlib will
first check whether the requested spot color can be found in one of its built-in libraries.
If so, PDFlib will use built-in values for the alternate color. Otherwise the spot color is as-
sumed to be a user-defined color, and the client must supply appropriate alternate col-

1. See http://www.callassoftware.com
2. See http://www.lantanarips.com

http://www.callassoftware.com
http://www.lantanarips.com

3.3 Working with Color 55

or values. Built-in spot colors can not be redefined with custom alternate values. Spot
colors can be tinted, i.e., they can be used with a percentage between 0 and 1.

PDFlib will automatically generate suitable alternate colors for built-in spot colors
when a PDF/X conformance level has been selected (see Section 3.4, »PDF/X Support«,
page 61). For custom spot colors it is the user’s responsibility to provide alternate colors
which are compatible with the selected PDF/X conformance level.

Note Built-in spot color data and the corresponding trademarks have been licensed by PDFlib GmbH
from the respective trademark owners for use in PDFlib software.

PANTONE® colors. PANTONE Colors are well-known and
widely used on a world-wide basis. PDFlib fully supports the
PANTONE MATCHING SYSTEM• , totalling ca. 20 000 swatches.
All color swatch names from the following digital color li-
braries can be used (sample swatch names are provided in
parentheses):
> PANTONE solid coated (PANTONE 185 C)
> PANTONE solid uncoated (PANTONE 185 U)
> PANTONE solid matte (PANTONE 185 M)
> PANTONE process coated (PANTONE DS 35-1 C)
> PANTONE process uncoated (PANTONE DS 35-1 U)
> PANTONE process coated EURO (PANTONE DE 35-1 C)
> PANTONE pastel coated (PANTONE 9461 C)
> PANTONE pastel uncoated (PANTONE 9461 U)
> PANTONE metallic coated (PANTONE 871 C)
> PANTONE solid to process coated (PANTONE 185 PC)
> PANTONE solid to process coated EURO (PANTONE 185 EC)
> PANTONE hexachrome® coated (PANTONE H 305-1 C)
> PANTONE hexachrome® uncoated (PANTONE H 305-1 U)
> PANTONE solid in hexachrome coated (PANTONE 185 HC)

The PANTONE prefix must always be provided in the swatch name as shown in the ex-
amples. Generally, PANTONE Color names must be constructed according to the follow-
ing scheme:

PANTONE <id> <paperstock>

where <id> is the identifier of the color (e.g., 185) and <paperstock> the abbreviation of the
paper stock in use (e.g., C for coated). A single space character must be provided between
all components constituting the swatch name. It is an error to request a spot color name
starting with the PANTONE prefix if the name does not represent a valid PANTONE Color.
The following code snippet demonstrates the use of a PANTONE Color with a tint value
of 70 percent:

spot = PDF_makespotcolor(p, "PANTONE 281 U", 0);
PDF_setcolor(p, "fill", "spot", spot, 0.7, 0, 0);

Note PANTONE® Colors displayed here may not match PANTONE-identified standards. Consult cur-
rent PANTONE Color Publications for accurate color. PANTONE® and other Pantone, Inc. trade-
marks are the property of Pantone, Inc. © Pantone, Inc., 2002.

Note PANTONE® Colors are not currently supported in the PDF/X-1 and PDF/X-1a modes.

56 Chapter 3: PDFlib Programming

HKS® colors. The HKS color system is widely used in Germa-
ny and other European countries. PDFlib fully supports HKS
colors, including those from the new HKS 3000 plus palettes.
All color swatch names from the following digital color librar-
ies (Farbfächer) can be used (sample swatch names are provid-
ed in parentheses):
> HKS K (Kunstdruckpapier) for gloss art paper, 88 colors (HKS 43 K)
> HKS K 3000 plus (Kunstdruckpapier) for gloss art paper, 3520 colors (HKS 43 K-40-30)
> HKS N (Naturpapier) for natural paper, 88 colors (HKS 43 N)
> HKS N 3000 plus (Naturpapier) for natural paper, 3520 colors (HKS 43 K-40-30)
> HKS E (Endlospapier) for continuous stationary/coated, 90 colors (HKS 43 E)
> HKS Ek (Endlospapier) for continuous stationary/uncoated, 88 colors (HKS 43 E)
> HKS En: identical to HKS E (HKS 43 En)
> HKS Z (Zeitungspapier) for newsprint, 50 colors (HKS 43 Z)

The HKS prefix must always be provided in the swatch name as shown in the examples.
Generally, HKS color names must be constructed according to one of the following
schemes:

HKS <id> <paperstock>
HKS <id> <paperstock>-<tint>-<black>

where <id> is the identifier of the color (e.g., 43) and <paperstock> the abbreviation of the
paper stock in use (e.g., N for natural paper). A single space character must be provided
between the HKS, <id>, and <paperstock> components constituting the swatch name. The
second scheme above is only allowed for colors from the HKS K 3000 plus and
HKS N 3000 plus libraries; <tint> is a tint percentage in the range 10, 20, ..., 90, 100, and
<black> is a black tint value of 10, 30, or 50 percent. It is an error to request a spot color
name starting with the HKS prefix if the name does not represent a valid HKS color. The
following code snippet demonstrates the use of an HKS color with a tint value of
70 percent:

spot = PDF_makespotcolor(p, "HKS 38 E", 0);
PDF_setcolor(p, "fill", "spot", spot, 0.7, 0, 0);

User-defined spot colors. In addition to built-in spot colors as detailed above, PDFlib
supports custom spot colors. These can be assigned an arbitrary name (which must not
conflict with the name of any built-in color, however) and an alternate color which will
be used for screen preview or low-quality printing, but not for high-quality color sepa-
rations. The client is responsible for providing suitable alternate colors for custom spot
colors.

There is no separate PDFlib function for setting the alternate color for a new spot col-
or; instead, the current fill color will be used. Except for an additional call to set the al-
ternate color, defining and using custom spot colors works similarly to using built-in
spot colors:

PDF_setcolor(p, "fill", "cmyk", 0.2, 1.0, 0.2, 0); /* define alternate CMYK values */
spot = PDF_makespotcolor(p, "CompanyLogo", 0); /* derive a spot color from it */
PDF_setcolor(p, "fill", "spot", spot, 1, 0, 0); /* set the spot color */

3.3 Working with Color 57

3.3.4 Color Management and ICC Profiles
The International Color Consortium (ICC)1 defined a file format for specifying color
characteristics of input and output devices. These ICC color profiles are considered an
industry standard, and are supported by all major color management system and appli-
cation vendors. PDFlib supports color management with ICC profiles in the following
areas:
> Define ICC-based color spaces for text and vector graphics on the page.
> Process ICC profiles embedded in imported image files.
> Apply an ICC profile to an imported image (possibly overriding an ICC profile em-

bedded in the image).
> Define default color spaces for mapping grayscale, RGB, or CMYK data to ICC-based

color spaces.
> Define a PDF/X output intent by means of an external ICC profile.

Color management does not change the number of components in a color specification
(e.g., from RGB to CMYK).

Searching for ICC profiles. PDFlib will search for ICC profiles according to the following
steps, using the profilename parameter supplied to PDF_load_iccprofile():
> If profilename = sRGB, PDFlib will use its internal sRGB profile (see below), and termi-

nate the search.
> Check whether there is a resource named profilename in the ICCProfile resource cate-

gory. If so, use its value as file name in the following steps. If there is no such re-
source, use profilename as a file name directly.

> Use the file name determined in the previous step to locate a disk file by trying the
following combinations one after another:

<filename>
<filename>.icc
<filename>.icm
<colordir>/<filename>
<colordir>/<filename>.icc
<colordir>/<filename>.icm

On Windows 2000/XP colordir designates the directory where device-specific ICC pro-
files are stored by the operating system (typically C:\WINNT\system32\spool\drivers\
color). On Mac OS X the following paths will be tried for colordir:

/System/Library/ColorSync/Profiles
/Library/ColorSync/Profiles
/Network/Library/ColorSync/Profiles
~/Library/ColorSync/Profiles

On other systems the steps involving colordir will be omitted.

Acceptable ICC profiles. The type of acceptable ICC profiles depends on the usage pa-
rameter supplied to PDF_load_iccprofile():
> If usage = outputintent, only output device (printer) profiles will be accepted.

1. See http://www.color.org

http://www.color.org

58 Chapter 3: PDFlib Programming

> If usage = iccbased, input, display and output device (scanner, monitor, and printer)
profiles plus color space conversion profiles will be accepted. They may be specified
in the gray, RGB, CMYK, or Lab color spaces.

The sRGB color space and sRGB ICC profile. PDFlib supports the industry-standard
RGB color space called sRGB (formally IEC 61966-2-1)1. sRGB is supported by a variety of
software and hardware vendors and is widely used for simplified color management for
consumer RGB devices such as digital still cameras, office equipment such as color
printers, and monitors. PDFlib supports the sRGB color space and includes the required
ICC profile data internally. Therefore an sRGB profile must not be configured explicitly
by the client, but it is always available without any additional configuration. It can be
requested by calling PDF_load_iccprofile() with profilename = sRGB.

3.3.5 Working with ICC Profiles

Using embedded profiles in images (ICC-tagged images). Some images may contain
embedded ICC profiles describing the nature of the image’s color values. For example,
an embedded ICC profile can describe the color characteristics of the scanner used to
produce the image data. PDFlib can handle embedded ICC profiles in the PNG, JPEG, and
TIFF image file formats. If the honoriccprofile option or parameter is set to true (which is
the default) the ICC profile embedded in an image will be extracted from the image, and
embedded in the PDF output such that Acrobat will apply it to the image. This process is
sometimes referred to as tagging an image with an ICC profile. PDFlib will not alter the
image’s pixel values.

The image:iccprofile parameter can be used to obtain an ICC profile handle for the
profile embedded in an image. This may be useful when the same profile shall be ap-
plied to multiple images.

In order to check the number of color components in an unknown ICC profile use the
icccomponents parameter.

Applying external ICC profiles to images (tagging). As an alternative to using ICC pro-
files embedded in an image, an external profile may be applied to an individual image
by supplying a profile handle along with the iccprofile option to PDF_load_image().

In order to apply certain ICC profiles to all images, the image:iccprofile parameter can
be used. As opposed to setting default color spaces (see below) these parameters affect
only images, but not text and vector graphics.

ICC-based color spaces for page descriptions. The color values for text and vector
graphics can directly be specified in the ICC-based color space specified by a profile. The
color space must first be set by supplying the ICC profile handle as value to one of the
setcolor:iccprofilegray, setcolor:iccprofilergb, setcolor:iccprofilecmyk parameters. Subse-
quently ICC-based color values can be supplied to PDF_setcolor() along with one of the
color space keywords iccbasedgray, iccbasedrgb, or iccbasedcmyk:

icchandle = PDF_load_iccprofile(...)
if (icchandle == -1) {

return;
}

1. See http://www.srgb.com

http://www.srgb.com

3.3 Working with Color 59

PDF_set_parameter(p, "setcolor:iccbasedcmyk", icchandle);
PDF_setcolor(p, "fill", "iccbasedcmyk", 0, 1, 0, 0);

Mapping device colors to ICC-based default color spaces. PDF provides a feature for
mapping device-dependent gray, RGB, or CMYK colors in a page description to device-
independent colors. This can be used to attach a precise colorimetric specification to
color values which otherwise would be device-dependent. Mapping color values this
way is accomplished by supplying a DefaultGray, DefaultRGB, or DefaultCMYK color
space definition. In PDFlib it can be achieved by setting the defaultgray, defaultrgb, or
defaultcmyk parameters and supplying an ICC profile handle as the corresponding val-
ue. The following examples will set the sRGB color space as the default RGB color space
for text, images, and vector graphics:

icchandle = PDF_load_iccprofile(p, "sRGB", 0, "", 0, "iccbased");
if (icchandle == -1) {

return;
}
PDF_set_value(p, "defaultrgb", icchandle);

Defining PDF/X output intents. An output device (printer) profile can be used to speci-
fy an output condition for PDF/X. This is done by supplying usage = outputintent in the
call to PDF_load_iccprofile(). For details see Section 3.4.1, »Generating PDF/X-conforming
Output«, page 61.

3.3.6 Device-Independent CIE L*a*b* Color
Device-independent color values can be specified in the CIE 1976 L*a*b* color space by
supplying the color space name lab to PDF_setcolor(). Colors in the L*a*b* color space are
specified by a luminance value in the range 0-100, and two color values in the range -127
to 128. The illuminant used for the lab color space will be D50 (daylight 5000 K, 2˚ ob-
server)

3.3.7 Rendering Intents
Although PDFlib clients can specify device-independent color values, a particular out-
put device is not necessarily capable of accurately reproducing the required colors. In
this situation some compromises have to be made regarding the trade-offs in a process
called gamut compression, i.e., reducing the range of colors to a smaller range which can
be reproduced by a particular device. The rendering intent can be used to control this
process. Rendering intents can be specified for individual images by supplying the
renderingintent parameter or option to PDF_load_image(). In addition, rendering intents
can be specified for text and vector graphics by supplying the renderingintent option to
PDF_create_gstate(). Table 3.8 lists the available rendering intents and their meanings.

Table 3.8 Rendering intents

rendering intent explanation typical use
Auto Do not specify any rendering intent in the PDF file, but use

the device’s default intent instead. This is the default.
 unknown or unspecific uses

AbsoluteColorimetric No correction for the device’s white point (such as paper
white) is made. Colors which are out of gamut are mapped
to nearest value within the device’s gamut.

exact reproduction of solid
colors; not recommended
for other uses.

60 Chapter 3: PDFlib Programming

RelativeColorimetric The color data is scaled into the device’s gamut, mapping
the white points onto one another while slightly shifting
colors.

vector graphics

Saturation Saturation of the colors will be preserved while the color
values may be shifted.

business graphics

Perceptual Color relationships are preserved by modifying both in-
gamut and out-of-gamut colors in order to provide a
pleasing appearance.

scanned images

Table 3.8 Rendering intents

rendering intent explanation typical use

3.4 PDF/X Support 61

3.4 PDF/X Support
The PDF/X standards series strives to provide a consistent and robust subset of PDF
which can be used to deliver data suitable for commercial printing. PDFlib can generate
output conforming to the following flavors of PDF/X:
> PDF/X-1 and PDF/X-1a, both defined in ISO 15930-1:2001
> PDF/X-3 as defined in ISO 15930-3:2002

PDFlib will support PDF/X-2 (ISO 15930-2) as soon as this standard has been finalized.

Note PANTONE® Colors are not currently supported in the PDF/X-1 and PDF/X-1a modes.

3.4.1 Generating PDF/X-conforming Output
Creating PDF/X-conforming output with PDFlib is achieved by the following means:
> PDFlib will automatically take care of several formal settings for PDF/X, such as PDF

version number and PDF/X conformance keys.
> The PDFlib client must explicitly use certain function calls or parameter settings as

detailed in Table 3.9.
> The PDFlib client must refrain from using certain function calls and parameter set-

tings as detailed in Table 3.10.
> Additional rules apply when importing pages from existing PDF/X-conforming doc-

uments (see Section 3.4.2, »Importing PDF/X Documents with PDI«, page 63).

Required operations. Table 3.9 lists all operations required to generate PDF/X-compa-
tible output. The items apply to all PDF/X conformance levels unless otherwise noted.
Not calling one of the required functions while in PDF/X mode will trigger an exception.

Table 3.9 Operations which must be applied for PDF/X compatibility

Item PDFlib function and parameter requirements for PDF/X compatibility
conformance level The pdfx parameter must be set to the required PDF/X conformance level before calling

PDF_open_file().
output condition
(output intent)

PDF_load_iccprofile() with usage = outputintent or PDF_process_pdi() with action =
copyoutputintent must be called exactly once for each document. If spot colors from one
of the built-in color libraries are used an output intent ICC profile must be embedded
(using a standard output condition is not allowed in these cases).
PDF/X-1 and PDF/X-1a: the output device must be a grayscale or CMYK device;
PDF/X-3: the output device must be a monochrome, RGB, or CMYK device. If ICC-based
colors or Lab colors are used in the file, an output device ICC profile must be embedded.

font embedding Set the embedding option of PDF_load_font() to true to enable font embedding.
page sizes The page boxes, which are settable via the CropBox, BleedBox, TrimBox, and ArtBox

parameters, must satisfy all of the following requirements:
The TrimBox or ArtBox must be set, but not both of these box entries.
The BleedBox, if present, must be contained within the ArtBox or TrimBox.
The CropBox, if present, must be contained within the ArtBox or TrimBox.

grayscale color PDF/X-3: the defaultgray parameter must be set if grayscale images are used or PDF_
setcolor() is used with a gray color space, and the PDF/X output condition is not a CMYK
or grayscale device.

RGB color PDF/X-3: the defaultrgb parameter must be set if RGB images are used or PDF_setcolor() is
used with an RGB color space, and the PDF/X output condition is not an RGB device.

62 Chapter 3: PDFlib Programming

Prohibited operations. Table 3.10 lists all operations which are prohibited when gener-
ating PDF/X-compatible output. The items apply to all PDF/X conformance levels unless
otherwise noted. Calling one of the prohibited functions while in PDF/X mode will trig-
ger an exception. However, images with unacceptable compression (GIF and LZW-com-
pressed TIFF images) will not result in an exception subject to the imagewarning param-
eter. Similarly, if an imported PDF page doesn’t match the current PDF/X conformance
level, the corresponding PDI call will fail without an exception (subject to the
pdiwarning parameter).

Standard output conditions. The output condition defines the intended target device,
which is mainly useful for reliable proofing. The output intent can either be specified
by an ICC profile or by supplying the name of a standard output intent. Table 3.11 lists
the names of standard output intents known to PDFlib. Additional standard output in-
tents can be defined using the StandardOutputIntent resource category (see Section 3.1.6,
»Resource Configuration and File Searching«, page 41). It is the user’s responsibility to
add only those names as standard output intents which can be recognized by PDF/X-
processing software.

CMYK color PDF/X-3: the defaultcmyk parameter must be set if cmyk images are used or PDF_
setcolor() is used with a CMYK color space, and the PDF/X output condition is not a CMYK
device.

document info keys The Creator and Title info keys must be set with PDF_set_info().

Table 3.10 Operations which must be avoided to achieve PDF/X compatibility

Item PDFlib functions and parameters to be avoided for PDF/X compatibility
grayscale color PDF/X-1: the defaultgray parameter must be avoided.
RGB color PDF/X-1 and PDF/X-1a: RGB images and the defaultrgb parameter must be avoided.
CMYK color PDF/X-1: the defaultcmyk parameter must be avoided.
ICC-based color PDF/X-1 and PDF/X-1a: the iccbasedgray/rgb/cmyk color space in PDF_setcolor() and the

setcolor:iccprofilegray/rgb/cmyk parameters must be avoided.
Lab color PDF/X-1 and PDF/X-1a: the Lab color space in PDF_setcolor() must be avoided.
annotations Annotations inside the BleedBox (or TrimBox/ArtBox if no BleedBox is present) must be

avoided: PDF_attach_file(), PDF_add_note(), PDF_add_pdflink(), PDF_add_locallink(), PDF_
add_launchlink(), PDF_setcolor(), PDF_add_weblink().

images GIF images and LZW-compressed TIFF images must be avoided.
document info keys Trapped info key values other than True or False for PDF_set_info() must be avoided.
security PDF/X-1: userpassword parameter and permissions parameter value noprint must be

avoided;
PDF/X-1a and PDF/X-3: userpassword, masterpassword, and permissions parameters must
be avoided.

PDF version Setting the PDF version number must be avoided since PDFlib will do this automatically.
Since PDF/-X, PDF/X-1a, and PDF/X-3 are based on PDF 1.3, operations which require
PDF 1.4 (such as transparency settings or soft masks) must be avoided.

PDF import (PDI) Imported documents must conform to the same PDF/X level as the output document, and
must have been prepared according to the same output intent.

Table 3.9 Operations which must be applied for PDF/X compatibility

Item PDFlib function and parameter requirements for PDF/X compatibility

3.4 PDF/X Support 63

3.4.2 Importing PDF/X Documents with PDI
Special rules apply when pages from an existing PDF document will be imported into a
PDF/X-conforming output document (see Section 5.2, »Importing PDF Pages with PDI
(PDF Import Library)«, page 108, for details on the PDF import library PDI). All imported
documents must conform to the same PDF/X conformance level as the generated out-
put document. If a certain PDF/X conformance level is configured in PDFlib and the im-
ported documents also adhere to this level, the generated output is guaranteed to com-
ply with the same PDF/X conformance level. Imported documents which do not adhere
to the chosen PDF/X level will be rejected.

If multiple PDF/X documents are imported, they must all have been prepared for the
same output condition. While PDFlib can correct certain items, it is not intended to
work as a full PDF/X validator or to enforce full PDF/X compatibility for imported docu-
ments. For example, PDFlib will not embed fonts which are missing from imported PDF
pages, and does not apply any color correction to imported pages.

If you want to combine imported pages such that the resulting PDF output docu-
ment conforms to the same PDF/X conformance level and output condition as the in-
put document(s), you can query the PDF/X status of the imported PDF as follows:

pdfxlevel = PDF_get_pdi_parameter(p, "pdfx", doc, -1, 0, &len);

This statement will retrieve a string designating the PDF/X conformance level of the im-
ported document if it conforms to an ISO PDF/X level, or none otherwise. The returned
string can be used to set the PDF/X conformance level of the output document appro-
priately:

PDF_set_parameter(p, "pdfx", pdfxlevel);

In addition to querying the PDF/X conformance level you can also copy the PDF/X out-
put intent from an imported document as follows:

doc = PDF_process_pdi(p, doc, -1, "action copyoutputintent");

This can be used as an alternative to setting the output intent via PDF_load_iccprofile(),
and will copy the imported document’s output intent to the generated output docu-

Table 3.11 Standard output intents for PDF/X

Output intent description
CGATS TR 001 SWOP (publication) printing in USA
OF COM PO P1 F60 ISO 12647-2, positive plates, paper type 1 (gloss-coated)
OF COM PO P2 F60 ISO 12647-2, positive plates, paper type 2 (matte-coated)
OF COM PO-P3 F601 ISO 12647-2, positive plates, paper type 3 (light weight coated web)
OF COM PO P4 F60 ISO 12647-2, positive plates, paper type 4 (uncoated white offset)
OF COM NE P1 F60 ISO 12647-2, negative plates, paper type 1 (gloss-coated)
OF COM NE P2 F60 ISO 12647-2, negative plates, paper type 2 (matte-coated)
OF COM NE P3 F60 ISO 12647-2, negative plates, paper type 3 (light weight coated web)
OF COM NE P4 F60 ISO 12647-2, negative plates, paper type 4 (uncoated white offset)
SC GC2 CO F30 ISO 12647-5, gamut class 2, conventional UV or water-based air dried
Ifra_NP_40lcm_neg+CTP_05.00 Coldset offset (computer to plate)

1. Although the dash character between P0 and P3 may look inconsistent, it is actually required by the standard.

64 Chapter 3: PDFlib Programming

ment, regardless of whether it is defined by a standard name or an ICC profile. The out-
put intent of the generated output document must be set exactly once, either by copy-
ing an imported document’s output intent, or by setting it explicitly using PDF_load_
iccprofile() with the usage option set to outputintent.

3.5 Passwords and Permissions 65

3.5 Passwords and Permissions
3.5.1 Strengths and Weaknesses of PDF Security Features

PDF supports various security features which aid in protecting document contents.
They are based on Acrobat’s standard encryption handler which uses symmetric en-
cryption. Both Acrobat Reader and the full Acrobat product support the following secu-
rity features:
> Permissions restrict certain actions for the PDF document, such as printing or ex-

tracting text.
> The user password is required to open the file.
> The master password is required to change any security settings, i.e. permissions,

user or master password. Files with user and master passwords can be opened for
reading or printing with either password.

If a file has a user or master password or any permissions restrictions set, it will be en-
crypted.

Cracking protected PDF documents. The length of the encryption keys used for pro-
tecting documents depends on the PDF compatibility level chosen by the client:
> For PDF versions up to and including 1.3 (i.e., Acrobat 4) the key length is 40 bits.
> For PDF version 1.4 the key length is 128 bits. This requires Acrobat 5.

It is widely known that a key length of 40 bits for symmetrical encryption (as used in
PDF) is not secure. Actually, using commercially available cracking software it is possi-
ble to disable 40-bit PDF security settings with a brute-force attack within days or
weeks, depending on the length and quality of the password. For maximum security we
recommend the following:
> Use 128-bit encryption (i.e., PDF 1.4 compatibility setting) if at all possible. This re-

quires Acrobat 5 for all users of the document.
> Passwords should be at least six characters long and should contain non-alphabetic

characters. Passwords should definitely not resemble your spouse’s or pet’s name,
your birthday etc. in order to prevent so-called dictionary attacks or password guess-
ing. It is important to mention that even with 128-bit encryption short passwords
can be cracked within minutes.

Access permissions. Setting some access restriction, such as printing prohibited will dis-
able the respective function in Acrobat. However, this not necessarily holds true for
third-party PDF viewers or other software. It is up to the developer of PDF tools whether
or not access permissions will be honored. Indeed, several PDF tools are known to ignore
permission settings altogether; commercially available PDF cracking tools can be used
to disable any access restrictions. This has nothing to do with cracking the encryption;
there is simply no way that a PDF file can make sure it won’t be printed while it still re-
mains viewable. This is actually documented in Adobe’s own PDF reference:

There is nothing inherent in PDF encryption that enforces the document permissions speci-
fied in the encryption dictionary. It is up to the implementors of PDF viewers to respect the in-
tent of the document creator by restricting user access to an encrypted PDF file according to
the permissions contained in the file.

66 Chapter 3: PDFlib Programming

3.5.2 Protecting Documents with PDFlib

Passwords. Passwords can be set with the userpassword and masterpassword parame-
ters. PDFlib interacts with the client-supplied passwords in the following ways:
> If a user password or permissions (see below), but no master password has been sup-

plied, a regular user would be able to change the security settings. For this reason
PDFlib considers this situation as an error.

> If user and master password are the same, a distinction between user and owner of
the file would no longer be possible, again defeating effective protection. PDFlib con-
siders this situation as an error.

> For both user and master passwords, up to a maximum of 32 characters will be used.
Additional characters will be ignored, and do not affect encryption. Empty pass-
words are not allowed.

The supplied passwords will be used for all subsequently generated documents.

Permissions. Access restrictions can be set with the permissions parameter. It consists
of a string with one or more access restrictions. Before setting the permissions parameter
a master password must be set, because otherwise Acrobat users could easily remove
the permission settings. By default, all actions are allowed. Specifying an access restric-
tion will disable the respective feature in Acrobat. Access restrictions can be applied
without any user password. The supplied permissions will be used for all subsequently
generated documents.Multiple restriction keywords can be specified, separated with a
blank character as in the following example:

PDF_set_parameter(p, "permissions", "noprint nocopy");

Table 3.12 lists all supported access restriction keywords. The noforms, noaccessible,
noassemble and nohiresprint keywords require PDF 1.4 compatibility. They will be rejected
otherwise.

Table 3.12 Access restriction keywords

keyword explanation
noprint Acrobat will prevent printing the file.
nomodify Acrobat will prevent users from adding form fields or making any other changes.
nocopy Acrobat will prevent copying and extracting text or graphics, and will disable the accessibility

interface
noannots Acrobat will prevent adding or changing comments or form fields.
noforms Acrobat will prevent form field filling, even if noannots hasn’t been specified.
noaccessible Acrobat will prevent extracting text or graphics for accessibility purposes (such as a screenreader

program)
noassemble Acrobat will prevent inserting, deleting, or rotating pages and creating bookmarks and

thumbnails, even if nomodify hasn’t been specified.
nohiresprint Acrobat will prevent high-resolution printing. If noprint hasn’t been specified printing is restricted

to the »print as image« feature which prints a low-resolution rendition of the page.

4.1 Overview of Fonts and Encodings 67

4 Text Handling

4.1 Overview of Fonts and Encodings
Font handling is one of the most complex aspects of page descriptions and document
formats like PDF. In this section we will summarize PDFlib’s main characteristics with
regard to font and encoding handling (encoding refers to the mapping between individ-
ual bytes or byte combinations to the characters which they actually represent). Except
where noted otherwise, PDFlib supports the same font formats on all platforms.

4.1.1 Supported Font Formats
PDFlib supports a variety of font types. This section summarizes the supported font
types and notes some of the most important aspects of these formats.

PostScript Type 1 fonts. PostScript fonts can be packaged in various file formats, and
are usually accompanied by a separate file containing metrics and other font-related in-
formation. PDFlib supports Mac and Windows PostScript fonts, and all common file for-
mats for PostScript font outline and metrics data.

TrueType fonts. PDFlib supports vector-based TrueType fonts, but not those based on
bitmaps. The TrueType font file must be supplied in Windows TTF format, or must be
installed in the Mac or Windows operating system. Contrary to PostScript Type 1 fonts,
TrueType and OpenType fonts do not require any additional metrics file since the met-
rics information is included in the font file itself.

OpenType fonts. OpenType is a modern font format which combines PostScript and
TrueType technology, and uses a platform-independent file format. OpenType is na-
tively supported on Windows 2000/XP, and Mac OS X. There are two flavors of Open-
Type fonts, both of which are supported by PDFlib:
> OpenType fonts with TrueType outlines (*.ttf) look and feel like usual TrueType

fonts.
> OpenType fonts with PostScript outlines (*.otf) contain PostScript data in a True-

Type-like file format. This flavor is also called CFF (Compact Font Format).

Chinese, Japanese, and Korean (CJK) fonts. In addition to Acrobat’s standard CJK fonts
(see Section 4.7, »Chinese, Japanese, and Korean Text«, page 93), PDFlib supports custom
CJK fonts in the TrueType and OpenType formats. Generally these fonts are treated sim-
ilarly to Western fonts. However, certain restrictions apply.

Type 3 fonts. In addition to PostScript, TrueType, and OpenType fonts, PDFlib also
supports the concept of user-defined (Type 3) PDF fonts. Unlike the common font for-
mats, user-defined fonts are not fetched from an external source (font file or operating
system services), but must be completely defined by the client by means of PDFlib’s na-
tive text, graphics, and image functions. Type 3 fonts are useful for the following pur-
poses:
> bitmap fonts,
> custom graphics, such as logos can easily be printed using simple text operators,

68 Chapter 4: Text Handling

> Japanese gaiji (user-defined characters) which are not available in any predefined
font or encoding.

4.1.2 Encodings
An encoding defines how the actual bytes in a string will be interpreted by PDFlib and
Acrobat, and how they translate into text on a page. PDFlib supports a variety of encod-
ing methods.
All supported encodings can be arbitrarily mixed in one document. You may even use
different encodings for a single font, although the need to do so will only rarely arise.

Note Not all encodings can be used with a given font. The user is responsible for making sure that
the font contains all characters required by a particular encoding. This can even be problematic
with Acrobat’s core fonts (see Table 4.2).

Identifying glyphs. There are three fundamentally different methods for identifying
individual glyphs (representations of a character) in a font:
> PostScript Type 1 fonts are based on the concept of glyph names: each glyph is la-

belled with a unique name which can be used to identify the character, and con-
struct code mappings which are suitable for a certain environment. While glyph
names have served their purpose for quite some time they impose severe restric-
tions on modern computing because of their space requirements and because they
do not really meet the requirements of international use (in particular CJK fonts).

> TrueType and OpenType fonts identify individual glyphs based on their Unicode
values. This makes it easy to add clear semantics to all glyphs in a text font. However,
there are no standard Unicode assignments for pi or symbol fonts. This implies some
difficulties when using symbol fonts in a Unicode environment.

> Chinese, Japanese, and Korean OpenType fonts are based on the concept of Character
IDs (CIDs). These are basically numbers which refer to a standard repository (called
character complement) for the respective language.

There is considerable overlap among these concepts. For example, TrueType fonts may
contain an auxiliary table of PostScript glyph names for compatibility reasons. On the
other hand, Unicode semantics for many standard PostScript glyph names are available
in the Adobe Glyph List (AGL). PDFlib supports all three methods (name-based, Unicode,
CID).

8-Bit encodings. 8-bit encodings (also called single-byte encodings) map each byte in a
text string to a single character, and are thus limited to 256 different characters at a
time. 8-bit encodings used in PDFlib are based on glyph names or Unicode values, and
can be drawn from various sources:
> A large number of predefined encodings according to Table 4.2. These cover the most

important encodings currently in use on a variety of systems, and in a variety of lo-
cales.

> User-defined encodings which can be supplied in an external file or constructed dy-
namically at runtime with PDF_encoding_set_char(). These encodings can be based on
glyph names or Unicode values.

> Encodings pulled from the operating system, also known as system encoding. This
feature is only available on IBM eServer iSeries and zSeries.

4.1 Overview of Fonts and Encodings 69

> Abbreviated Unicode-based encodings which can be used to conveniently address
any Unicode range of 256 consecutive characters with 8-bit values.

> Encodings specific to a particular font. These are also called font-specific or builtin en-
codings.

Wide-character addressing. In addition to 8-bit encodings, various other addressing
schemes are supported which are much more powerful, and not subject to the 256 char-
acter limit.
> Purely Unicode-based addressing via the unicode encoding keyword. In this case the

client directly supplies Unicode strings to PDFlib. The Unicode strings may be for-
matted according to one of several standard methods (such as UCS-2, UTF-8) and byte
orderings (little-endian or big-endian).

> CMap-based addressing for a variety of Chinese, Japanese, and Korean standards. In
combination with standard CJK fonts PDFlib supports all CMaps supported by Acro-
bat. This includes both Unicode-based CMaps and others (see Section 4.7, »Chinese,
Japanese, and Korean Text«, page 93).

> Glyph id addressing for TrueType and OpenType fonts via the glyphid encoding key-
word. This is useful for advanced text processing applications which need access to
individual glyphs in a font without reference to any particular encoding scheme, or
must address glyphs which do not have any Unicode mapping. The number of valid
glyph ids in a font can be queried with the fontmaxcode parameter.

4.1.3 Support for the Unicode Standard
Unicode is a large character set which covers all current and many ancient languages
and scripts in the world, and has significant support in many applications, operating
systems, and programming languages. PDFlib supports the Unicode standard to a large
extent. The following features in PDFlib are Unicode-enabled:
> Unicode can be supplied directly in page descriptions.
> Unicode can be supplied for various hypertext elements.
> Unicode strings for text on a page or hypertext elements can be supplied in UTF-8 or

UTF-16 formats with any byte ordering.
> PDFlib supports Unicode for page descriptions for characters within the Adobe

Glyph List (AGL).
> PDFlib will include additional information (a ToUnicode CMap) in the PDF output

which helps Acrobat in assigning proper Unicode values for exporting text (e.g., via
the clipboard) and searching for Unicode text.

70 Chapter 4: Text Handling

4.2 Supported Font Formats
4.2.1 PostScript Fonts

PostScript font file formats. PDFlib supports the following file formats for PostScript
Type 1 metrics and outline data on all platforms:
> The platform-independent AFM (Adobe Font Metrics) and the Windows-specific PFM

(Printer Font Metrics) format for metrics information. Since PFM files do not describe
the full character metrics but only the glyphs used in Windows (code page 1252), they
can only be used for the winansi or builtin encodings, while AFM-based font metrics
can be rearranged to any encoding supported by the font.

> The platform-independent PFA (Printer Font ASCII) and the Windows-specific PFB
(Printer Font Binary) format for font outline information in the PostScript Type 1 for-
mat, (sometimes also called »ATM fonts«).

> On the Mac, resource-based PostScript Type 1 fonts, sometimes called LWFN (Laser-
Writer Font) fonts, are also supported.

> OpenType fonts with PostScript outlines (*.otf).

If you can get hold of a PostScript font file, but not the corresponding metrics file, you
can try to generate the missing metrics using one of several freely available utilities. For
example, the T1lib package1 contains the type1afm utility for generating AFM metrics
from PFA or PFB font files. However, be warned that such conversions often result in
font or encoding problems. For this reason it is recommended to use the font outline
and metrics data as supplied by the font vendor.

PostScript font names. It is important to use the exact (case-sensitive) PostScript font
name whenever a font is referenced in PDFlib. There are several possibilities to find a
PostScript font’s exact name:
> Open the font outline file (*.pfa or *.pfb), and look for the string after the entry

/FontName. Omit the leading / character from this entry, and use the remainder as
the font name.

> If you have ATM (Adobe Type Manager) installed or are working with Windows
2000/XP, you can double-click the font (*.pfb) or metrics (*.pfm) file, and will see a
font sample along with the PostScript name of the font.

> Open the AFM metrics file and look for the string after the entry FontName.

Note The PostScript font name may differ substantially from the Windows font menu name, e.g.
»AvantGarde-Demi« (PostScript name) vs. »AvantGarde, Bold« (Windows font menu name).
Also, the font name as given in any Windows .inf file is not relevant for use with PDF.

PostScript glyph names. In order to write a custom encoding file or find fonts which
can be used with one of the supplied encodings you will have to find information about
the exact definition of the character set to be defined by the encoding, as well as the ex-
act glyph names used in the font files. You must also ensure that a chosen font provides
all necessary characters for the encoding. For example, the core fonts supplied with Ac-
robat 4/5 do not support ISO 8859-2 (Latin 2) nor Windows code page 1250. If you happen
to have the FontLab2 font editor (by the way, a great tool for dealing with all kinds of

1. See http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/rmz/t1lib/t1lib.html
2. See http://www.fontlab.com

http://www.neuroinformatik.ruhr-uni-bochum.de/ini/PEOPLE/rmz/t1lib/t1lib.html
http://www.fontlab.com

4.2 Supported Font Formats 71

font and encoding issues), you may use it to find out about the encodings supported by
a given font (look for »code pages« in the FontLab documentation).1

For the convenience of PDFlib users, the PostScript program print_glyphs.ps in the dis-
tribution fileset can be used to find the names of all characters contained in a PostScript
font. In order to use it, enter the name of the font at the end of the PostScript file and
send it (along with the font) to a PostScript Level 2 or 3 printer, convert it with Acrobat
Distiller, or view it with a Level-2-compatible PostScript viewer. The program will print
all glyphs in the font, sorted alphabetically by glyph name.

If a font does not contain a glyph required for a custom encoding, it will be missing
from the PDF document.

4.2.2 TrueType and OpenType Fonts

TrueType and OpenType file formats. PDFlib supports the following file formats for
TrueType and OpenType font data:
> Windows TrueType fonts (*.ttf), including CJK fonts
> TrueType collections (*.ttc) with multiple fonts in a single file (mostly used for CJK

fonts)
> Platform-independent OpenType fonts with TrueType (*.ttf) or PostScript outlines

(*.otf), including CJK fonts.
> On Mac OS any TrueType font installed on the system (including .dfont) can also be

used in PDFlib.

TrueType and OpenType font names. It is important to specify the exact (case-sensi-
tive) TrueType font name whenever a font is referenced in PDFlib. This must be the
name of the font as it is exposed at the user interface. In the generated PDF the name of
a TrueType font may differ from the name used in PDFlib (or Windows). This is normal,
and results from the fact that PDF uses the PostScript name of a TrueType font, which
differs from its genuine TrueType name (e.g., TimesNewRomanPSMT vs. Times New
Roman).

Note Contrary to PostScript fonts, TrueType and OpenType font names may contain blank characters.

Finding TrueType font names on Windows. You can easily find the name of an in-
stalled font by double-clicking the TrueType font file, and taking note of the full font
name which will be displayed in the first line of the resulting window (without the
TrueType or OpenType term in parentheses, of course). Do not use the entry in the second
line after the label Typeface name! Also, some fonts may have parts of their name local-
ized according to the respective Windows version in use. For example, the common font
name portion Bold may appear as the translated word Fett on a German system. In order
to retrieve the font data from the Windows system (host fonts) you must use the trans-
lated form of the font name in PDFlib. However, in order to retrieve the font data direct-
ly from file you must use the generic (non-localized) form of the font name.

If you want to examine TrueType fonts in more detail take a look at Microsoft’s free
»font properties extension«2 which will display many entries of the font’s TrueType ta-
bles in human-readable form.

1. Information about the glyph names used in PostScript fonts can be found at http://partners.adobe.com/asn/developer/
typeforum/unicodegn.html (although font vendors are not required to follow these glyph naming recommendations).
2. See http://www.microsoft.com/typography/property/property.htm

http://partners.adobe.com/asn/developer/typeforum/unicodegn.html
http://partners.adobe.com/asn/developer/typeforum/unicodegn.html
http://www.microsoft.com/typography/property/property.htm

72 Chapter 4: Text Handling

Finding TrueType font names on the Mac. Generally, you can find the name of an in-
stalled font in the font menu of applications such as TextEdit on Mac OS X. However,
this method does not always result in the proper font name as expected by PDFlib. For
this reason we recommend Apple’s freely available Font Tools1. This suite of command-
line utilities contains a program called ftxinstalledfonts which is useful for determining
the exact name of all installed fonts. In order to determine the font name expected by
PDFlib, install Font Tools and issue the following statement on the command-line:

ftxinstalledfonts -f

4.2.3 User-Defined (Type 3) Fonts
Type 3 fonts in PDF (as opposed to PostScript Type 3 fonts) are not actually a file format.
Instead, the glyphs in a Type 3 font must be defined at runtime with standard PDFlib
graphics functions. Since all PDFlib features for vector graphics, raster images, and even
text output can be used in Type 3 font definitions, there are no restrictions regarding
the contents of the characters in a Type 3 font. Combined with the PDF import library
PDI you can even import complex drawings as a PDF page, and use those for defining a
character in a Type 3 font.

Note PostScript Type 3 fonts are not supported.

Type 3 fonts must completely be defined outside of any page (more precisely, the font
definition must take place in document scope). The following example demonstrates the
definition of a simple Type 3 font:

PDF_begin_font(p, "Fuzzyfont", 1, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0);

PDF_begin_glyph(p, "circle", 1000, 0, 0, 1000, 1000);
PDF_arc(p, 500, 500, 500, 0, 360);
PDF_fill(p);
PDF_end_glyph(p);

PDF_begin_glyph(p, "ring", 400, 0, 0, 400, 400);
PDF_arc(p, 200, 200, 200, 0, 360);
PDF_stroke(p);
PDF_end_glyph(p);

PDF_end_font(p);

The font will be registered in PDFlib, and its name can be supplied to PDF_load_font()
along with an encoding which contains the names of the glyphs in the Type 3 font.
Please note the following when working with Type 3 fonts:
> Similar to patterns and templates, images cannot be opened within a glyph descrip-

tion. However, they can be opened before starting a glyph description, and placed
within the glyph description. Alternatively, inline images may be used for small bit-
maps to overcome this restriction.

> Due to restrictions in PDF consumers all characters used with text output operators
must actually be defined in the font: if character code x is to be displayed with PDF_
show() or a similar function, and the encoding contains glyphname at position x,
then glyphname must have been defined via PDF_begin_glyph(). This restriction af-

1. See http://developer.apple.com/fonts/OSXTools.html

http://developer.apple.com/fonts/OSXTools.html

4.2 Supported Font Formats 73

fects only Type 3 fonts; missing glyphs in PostScript Type 1, TrueType, or OpenType
fonts will simply be ignored.

> Some PDF consumers (this is not true for Acrobat) require a glyph named .notdef if
codes will be used for which the corresponding glyph names are not defined in the
font. The .notdef glyph must be present, but it may simply contain an empty glyph
description.

> When normal bitmap data is used to define characters, unused pixels in the bitmap
will print as white, regardless of the background. In order to avoid this and have the
original background color shine through, use the mask parameter for constructing
the bitmap image.

> The interpolate option for images may be useful for enhancing the screen and print
appearance of Type 3 bitmap fonts.

74 Chapter 4: Text Handling

4.3 Font Embedding and Subsetting
4.3.1 Making Fonts available to PDFlib

PDFlib can access font data from various sources:
> Disk-based font files which have been statically configured via a UPR configuration

file (see Section 3.1.6, »Resource Configuration and File Searching«, page 41) or dy-
namically via PDF_set_parameter().

> Fonts which have been installed in the operating system. We refer to such fonts as
host fonts. Instead of fiddling with font and configuration files simply install the font
in the operating system (read: drop it into the appropriate fonts directory), and
PDFlib will happily use it. Host fonts are available on Mac and Windows systems.
They can explicitly be configured with the HostFont UPR resource category in order to
control the search order. This feature can be used, for example, to prefer host fonts
over the built-in core fonts.

> Font data passed by the client directly in memory by means of a PDFlib virtual file
(PVF). This is useful for advanced applications which have the font data already load-
ed into memory and want to avoid unnecessary disk access by PDFlib (see Section
3.1.5, »The PDFlib Virtual File System (PVF)«, page 40 for details on virtual files).

4.3.2 Font Embedding

The PDF core fonts. PDF viewers support a core set of 14 fonts which are assumed to be
always available. Metrics information for the core fonts is already built into the PDFlib
binary so that no additional font files are required. The core fonts are the following:

Courier, Courier-Bold, Courier-Oblique, Courier-BoldOblique,
Helvetica, Helvetica-Bold, Helvetica-Oblique, Helvetica-BoldOblique,
Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic,
Symbol, ZapfDingbats

PDF supports fonts outside the set of 14 core fonts in several ways. PDFlib is capable of
embedding font outlines into the generated PDF output. Font embedding is controlled
via the embedding option of PDF_load_font(), although in some cases PDFlib will en-
force font embedding (see below).

Alternatively, a font descriptor containing only the character metrics and some gen-
eral information about the font (without the actual glyph outlines) can be embedded. If
a font is not embedded in a PDF document, Acrobat will take it from the target system if
available, or construct a substitute font according to the font descriptor in the PDF. Ta-
ble 4.1 lists different situations with respect to font usage, each of which poses different
requirements on the font and metrics files required by PDFlib.

When a font with font-specific encoding (a symbol font) or one containing glyphs
outside Adobe’s Standard Latin character set is used, but not embedded in the PDF out-
put, the resulting PDF will be unusable unless the font is already natively installed on
the target system (since Acrobat can only simulate Latin text fonts). Such PDF files are
inherently nonportable, although they may be of use in controlled environments, such
as intra-corporate document exchange.

Forced font embedding. PDF requires font embedding for certain combinations of
font and encoding. PDFlib will therefore force font embedding in the following cases:

4.3 Font Embedding and Subsetting 75

> Using glyphid or unicode encoding with a TrueType or OpenType font.
> Using a TrueType font or an OpenType font with TrueType outlines with an encod-

ing different from winansi and macroman. Note that font embedding will not be en-
forced for OpenType fonts with PostScript outlines. This is caused by the internal
conversion to a CID font, which can be disabled by setting the autocidfont parameter
to false. Doing so will also disable the forced embedding. However, the alternative
method has the disadvantage that not all Latin characters will be accessible.

Legal aspects of font embedding. It’s important to note that mere possession of a font
file may not justify embedding the font in PDF, even for holders of a legal font license.
Many font vendors restrict embedding of their fonts. Some type foundries completely
forbid PDF font embedding, others offer special online or embedding licenses for their
fonts, while still others allow font embedding provided subsetting is applied to the font.
Please check the legal implications of font embedding before attempting to embed
fonts with PDFlib. PDFlib will honor embedding restrictions which may be specified in a
TrueType or OpenType font. If the embedding flag in a TrueType font is set to no
embedding1, PDFlib will honor the font vendor’s request, and reject any attempt at em-
bedding the font.

4.3.3 Font Subsetting
In order to decrease the size of the PDF output, PDFlib can embed only those characters
from a font which are actually used in the document. This process is called font subset-
ting. It creates a new font which contains fewer glyphs than the original font, and omits
font information which is not required for PDF viewing. Note, however, that Acrobat’s
TouchUp tool will refuse to work with text in subset fonts. Font subsetting is particular-
ly important for CJK fonts. PDFlib supports subsetting for the following types of fonts:
> TrueType fonts,
> OpenType fonts with PostScript or TrueType outlines.

When a font for which subsetting has been requested is used in a document, PDFlib will
keep track of the number of characters actually used for text output. There are several
controls for the subsetting behavior:

Table 4.1 Different font usage situations and required metrics and outline files

font usage font metrics file required? font outline file required?
one of the 14 core fonts no no1

TrueType or OpenType font installed on the Mac, or
TrueType, OpenType, or PostScript fonts installed on
the Windows system (host fonts)

no no

non-core PostScript fonts PFM or AFM PFB or PFA
(only for font embedding)

TrueType fonts no TTF
OpenType fonts with TrueType or PS outlines,
including CJK TrueType and OpenType fonts

no TTF or OTF

standard CJK fonts2 no no

1. PostScript font outlines may be supplied for embedding, but not TrueType font outlines.
2. See Section 4.7, »Chinese, Japanese, and Korean Text«, page 93 for more information on CJK fonts.

1. More specifically: if the fsType flag in the OS/2 table of the font has a value of 2.

76 Chapter 4: Text Handling

> The default subsetting behavior is controlled by the autosubsetting parameter. If it is
true, subsetting will be enabled for all fonts where subsetting is possible. The default
value is true.

> If the autosubsetting parameter is false, but subsetting is desired for a particular font
nevertheless, the subsetting option must be supplied to PDF_load_font().

> The subsetlimit parameter contains a percentage value. If a document uses more than
this percentage of glyphs in a font, subsetting will be disabled for this particular
font, and the complete font will be embedded instead. This saves some processing
time at the expense of larger output files:

PDF_set_value(p, "subsetlimit", 75); /* set subset limit to 75% */

The default value of subsetlimit is 100 percent. In other words, the subsetting option
requested at PDF_load_font() will be honored unless the client explicitly requests a
lower limit than 100 percent.

> The subsetminsize parameter can be used to completely disable subsetting for small
fonts. If the original font file is smaller than the value of subsetminsize in KB, font
subsetting will be disabled for this font. The default value is 100 KB.

Embedding and subsetting TrueType fonts. The dependencies for TrueType handling
are a bit confusing due to certain requirements in PDF. The following is a summary of
the information in previous paragraphs.

If a TrueType font is used with an encoding different from winansi and macroman it
will be converted to a CID font for PDF output by default. For encodings which contain
only characters from the Adobe Glyph List (AGL) this can be prevented by setting the
autocidfont parameter to false. If the font is converted to a CID font, it will always be em-
bedded. Subsetting will be applied by default, unless the autosubsetting parameter is set
to false, or the percentage of used glyphs is higher than the subsetlimit parameter, or the
font size is lower than subsetminsize KB. Finally, subsetting will not be applied to fonts
which are smaller than the value of the subsetminsize parameter.

4.4 Encoding Details 77

4.4 Encoding Details
4.4.1 8-Bit Encodings

Table 4.2 lists the predefined encodings in PDFlib, and details their use with several im-
portant classes of fonts. It is important to realize that certain scripts or languages have
requirements which cannot be met by common fonts. For example, Acrobat’s core fonts
do not contain all characters required for ISO 8859-2, while PostScript 3, OpenType Pro,
and TrueType »big fonts« do.

Note The chartab example contained in the PDFlib distribution can be used to easily print character
tables for arbitrary font/encoding combinations.

Notes on the macroman encoding. This encoding reflects the Mac OS character set, al-
beit with the old currency symbol at position 219 = 0xDB, and not the Euro glyph as re-
defined by Apple (this incompatibility is dictated by the PDF specification). Also, this
encoding does not include the Apple glyph and the mathematical symbols as defined in
the Mac OS character set. The macroman_euro encoding is identical to macroman except
that position 219 = 0xDB holds the Euro glyph instead of the currency symbol.

Host encoding. The special encoding host does not have any fixed meaning, but will be
mapped to another 8-bit encoding depending on the current platform as follows:
> on Mac OS 9 it will be mapped to macroman;
> on IBM eServer iSeries and zSeries with MVS or USS it will be mapped to ebcdic;
> on Windows, Linux, Mac OS X and all other systems it will be mapped to winansi;

Host encoding is primarily useful for writing platform-independent test programs (like
those contained in the PDFlib distribution and other simple applications. Host encod-
ing is not recommended for production use, but should be replaced by whatever encod-
ing is appropriate.

Automatic encoding. PDFlib supports a mechanism which can be used to specify the
most natural encoding for certain environments without further ado. Supplying the
keyword auto as an encoding name specifies a platform- and environment-specific 8-bit
encoding as follows:
> On Windows: the current system code page (see below for details)
> On Unix and Mac OS X: iso8859-1
> On Mac OS Classic: macroman
> On IBM eServer iSeries: the current job’s encoding (IBMCCSID000000000000)
> On IBM eServer zSeries: ebcdic (=code page 1047).

While automatic encoding is convenient in many circumstances, using this method will
make your PDFlib client programs inherently non-portable.

Tapping system code pages. PDFlib can be instructed to fetch code page definitions
from the system and transform it appropriately for internal use. This is very convenient
since it frees you from implementing the code page definition yourself. Instead of sup-
plying the name of a built-in or user-defined encoding for PDF_load_font(), simply use
an encoding name which is known to the system. This feature is only available on se-
lected platforms, and the syntax for the encoding string is platform-specific:

78 Chapter 4: Text Handling

Table 4.2 Predefined encodings and their use with several classes of fonts

code page supported languages
PS Level 1/2,
Acrobat 4/51 PostScript 32

OpenType
Pro Fonts

»Big Fonts«,
e.g., Tahoma

winansi identical to cp1252, a superset of
ISO 8859-1

yes yes yes yes

macroman Mac Roman encoding, i.e., the
default Macintosh character set

yes yes yes yes

macroman_
euro

similar to macroman, but includes
the Euro glyph instead of currency

yes yes yes yes

ebcdic EBCDIC code page 1047 yes yes yes yes
pdfdoc PDFDocEncoding (for hypertext) yes yes yes yes
iso8859-1
(Latin-1)

Western European languages
(implemented as winansi)

yes yes yes yes

iso8859-2
(Latin-2)

Slavic languages of Central Europe no yes yes yes

iso8859-3
(Latin-3)

Esperanto and Maltese no no yes yes

iso8859-4
(Latin-4)

Estonian, the Baltic languages, and
Greenlandic

no no yes yes

iso8859-5 Bulgarian, Russian, and Serbian no no yes yes
iso8859-6 Arabic no no no yes
iso8859-7 Modern Greek no no 1 missing yes
iso8859-8 Hebrew and Yiddish no no no yes
iso8859-9
(Latin-5)

Western European and Turkish 5 missing yes yes yes

iso8859-10
(Latin-6)

Nordic languages (variation of
Latin-4)

no no 1 missing yes

iso8859-13
(Latin-7)

Baltic languages no yes yes yes

iso8859-14
(Latin-8)

Celtic no no no no

iso8859-15
(Latin-9)

Adds the Euro and some French and
Finnish characters to Latin-1

Euro missing yes yes yes

iso8859-16
(Latin-10)

Hungarian, Polish, Romanian, and
Slovenian

no yes yes yes

cp1250 Central European no yes yes yes
cp1251 Cyrillic no no yes yes
cp1252 Western European (implemented as

winansi)
yes yes yes yes

cp1253 Greek no no 1 missing yes
cp1254 Turkish 5 missing yes yes yes
cp1255 Hebrew no no no yes
cp1256 Arabic no no no 5 missing
cp1257 Baltic no yes yes yes
cp1258 Viet Nam no no no yes

1. Original Adobe Latin character set (Type 1 Fonts since 1982)
2. Extended Adobe Latin character set (CE-Fonts) (Type 1 Fonts since PostScript 3)

4.4 Encoding Details 79

> On Windows the encoding name is cp<number>, where <number> is the number of
any code page installed in the system:

PDF_load_font(p, "Helvetica", 0, "cp1250", "");

Single-byte code pages will be transformed into an internal 8-bit encoding, while
multi-byte code pages will always be mapped to unicode. This means that all strings
for page descriptions must be supplied in Unicode by the client programmer.

> On IBM eServer iSeries any Coded Character Set Identifier (CCSID) can be used. The
CCSID must be supplied as a string, and PDFlib will apply the prefix IBMCCSID to the
supplied code page number. PDFlib will also add leading 0 characters if the code page
number uses fewer than 5 characters. Supplying 0 (zero) as the code page number
will result in the current job’s encoding to be used:

PDF_load_font(p, "Helvetica", 0, "273", "");

> On IBM eServer zSeries with USS or MVS any Coded Character Set Identifier (CCSID) can
be used. The CCSID must be supplied as a string, and PDFlib will pass the supplied
code page name to the system literally without applying any change:

PDF_load_font(p, "Helvetica", 0, "IBM-273", "");

User-defined 8-bit encodings. In addition to predefined encodings PDFlib supports
user-defined 8-bit encodings. These are the way to go if you want to deal with some
character set which is not internally available in PDFlib, such as EBCDIC character sets
different from the one supported internally in PDFlib. PDFlib supports encoding tables
defined by PostScript glyph names, as well as tables defined by Unicode values.

The following tasks must be done before a user-defined encoding can be used in a
PDFlib program (alternatively the encoding can also be constructed at runtime using
PDF_encoding_set_char()):
> Generate a description of the encoding in a simple text format.
> Configure the encoding in the PDFlib resource file (see Section 3.1.6, »Resource Con-

figuration and File Searching«, page 41) or via PDF_set_parameter().
> Provide a font (metrics and possibly outline file) that supports all characters used in

the encoding.

The encoding file simply lists glyph names and numbers line by line. The following ex-
cerpt shows the start of an encoding definition:

% Encoding definition for PDFlib, based on glyph names
% name code Unicode (optional)
space 32 0x0020
exclam 33 0x0021
...

The next example shows a snippet from a Unicode code page:

% Code page definition for PDFlib, based on Unicode values
% Unicode code
0x0020 32
0x0021 33
...

More formally, the contents of an encoding or code page file are governed by the follow-
ing rules:

80 Chapter 4: Text Handling

> Comments are introduced by a percent ’%’ character, and terminated by the end of
the line.

> The first entry in each line is either a PostScript glyph name or a hexadecimal Uni-
code value composed of a 0x prefix and four hex digits (upper or lower case). This is
followed by whitespace and a hexadecimal (0xoo–0xFF) or decimal (0–255) character
code. Optionally, name-based encoding files may contain a third column with the
corresponding Unicode value.

> Character codes which are not mentioned in the encoding file are assumed to be un-
defined. Alternatively, a Unicode value of 0x0000 or the character name .notdef can
be provided for unused slots.

As a naming convention we refer to name-based tables as encoding files (*.enc), and Uni-
code-based tables as code page files (*.cpg), although PDFlib treats both kinds in the
same way, and doesn’t care about file names. In fact, PDFlib will automatically convert
between name-based encoding files and Unicode-based code page files whenever it is
necessary. This conversion is based on Adobe’s standard list of PostScript glyph names
(the Adobe Glyph List, or AGL1), but non-AGL names can also be used. The AGL is built
into PDFlib, and contains more than 1000 glyph names. Encoding files are required for
PostScript fonts with non-standard glyph names, while code pages are more convenient
when dealing with Unicode-based TrueType or OpenType fonts.

4.4.2 Symbol Fonts and Font-specific Encodings
Since Symbol or logo fonts (also called pi fonts) do not usually contain standard charac-
ters they must use a different encoding scheme compared to text fonts.

The builtin encoding for PostScript fonts. The encoding name builtin doesn’t describe a
particular character ordering but rather means »take this font as it is, and don’t mess
with the character set«. This concept is sometimes called a »font-specific« encoding and
is very important when it comes to non-text fonts (such as logo and symbol fonts). It is
also widely used (somewhat inappropriately) for non-Latin text fonts (such as Greek
and Cyrillic). Such fonts cannot be reencoded using one of the standard encodings since
their character names don’t match those in these encodings. Therefore builtin must be
used for all symbolic or non-text PostScript fonts, such as Symbol and ZapfDingbats.
Non-text fonts can be recognized by the following entry in their AFM file:

EncodingScheme FontSpecific

Text fonts can be reencoded (adjusted to a certain code page or character set), while
symbolic fonts can’t, and must use builtin encoding instead.

The builtin encoding can not be used for user-defined (Type 3) fonts since these do
not include any default encoding.

Note Unfortunately, many typographers and font vendors didn’t fully grasp the concept of font spe-
cific encodings (this may be due to less-than-perfect production tools). For this reason, there
are many Latin text fonts labeled as FontSpecific encoding, and many symbol fonts incorrectly
labeled as text fonts.

1. The AGL can be found at http://partners.adobe.com/asn/developer/type/glyphlist.txt

http://partners.adobe.com/asn/developer/type/glyphlist.txt

4.4 Encoding Details 81

Builtin encoding for TrueType fonts. TrueType fonts with non-text characters, such as
the WingDings font, must be used with builtin encoding. If a font requires builtin encod-
ing but the client requested a different encoding PDFlib will enforce builtin encoding
nevertheless.

Builtin encoding for OpenType fonts with PostScript outlines (*.otf). OTF fonts with
non-text characters must be used with builtin encoding. Some OTF fonts contain an in-
ternal default encoding. PDFlib will detect this case, and dynamically construct an en-
coding which is suited for this particular font. The encoding name builtin will be modi-
fied to builtin_<fontname>. Although this new encoding name can be used in future calls
to PDF_load_font() it is only reasonable for use with the same font.

4.4.3 Glyph ID Addressing for TrueType and OpenType Fonts
In addition to 8-bit encodings, Unicode, and CMaps PDFlib supports a method of ad-
dressing individual characters within a font called glyph id addressing. In order to use
this technique all of the following requirements must be met:
> The font is available in the TrueType or OpenType format.
> The font must be embedded in the PDF document (with or without subsetting).
> The developer is familiar with the internal numbering of glyphs within the font.

Glyph ids (GIDs) are used internally in TrueType and OpenType fonts, and uniquely ad-
dress individual glyphs within a font. GID addressing frees the developer from any re-
striction in a given encoding scheme, and provides access to all glyphs which the font
designer put into the font file. However, there is generally no relationship at all be-
tween GIDs and more common addresssing schemes, such as Windows encoding or Uni-
code. The burden of converting application-specific codes to GIDs is placed on the
PDFlib user.

GID addressing is invoked by supplying the keyword glyphid as the encoding parame-
ter of PDF_load_font(). GIDs are numbered consecutively from 0 to the last glyph id val-
ue, which can be queried with the fontmaxcode parameter.

4.4.4 The Euro Glyph
The symbol denoting the European currency Euro raises a number of is-
sues when it comes to properly displaying and printing it. In this section
we’d like to give some hints so that you can successfully deal with the
Euro character. First of all you’ll have to choose an encoding which in-
cludes the Euro character and check on which position the Euro is located.
Some examples:
> With unicode encoding use the character U+20AC.
> In winansi encoding the location is 0x80 (hexadecimal) or 128 (decimal).
> The common iso8859-1 encoding does not contain the Euro character. However, the

iso8859-15 encoding is an extension of iso8859-1 which adds the Euro character at
0xA4 (hexadecimal) or 164 (decimal).

> The original macroman encoding, which is still the same in PDF, does not contain the
Euro character. However, Apple modified this encoding and replaced the old curren-
cy glyph which the Euro glyph at 0xDB (hexadecimal) or 219 (decimal). In order to
use this modified Mac encoding use macroman_euro instead of macroman.

82 Chapter 4: Text Handling

Next, you must choose a font which contains the Euro glyph. Many modern fonts in-
clude the Euro glyph, but not all do. Again, some examples:
> The built-in fonts in PostScript Level 1 and Level 2 devices do not contain the Euro

character, while those in PostScript 3 devices usually do.
> If a font does not contain the Euro character you can use the Euro from the Symbol

core font instead, which is located at position 0xA0 (hexadecimal) or 160 (decimal). It
is available in the version of the Symbol font shipped with Acrobat 4.0 and above,
and the one built into PostScript 3 devices.

4.5 Unicode Support 83

4.5 Unicode Support
PDFlib supports the Unicode standard1, almost identical to ISO
10646, for a variety of features related to page content and hy-
pertext elements.

4.5.1 Unicode for Page Descriptions
Unicode strings can be supplied directly in page descriptions for
use with the following kinds of fonts:
> PostScript fonts with unicode encoding. Up to 255 distinct Unicode values can be

used. If more are requested they will be replaced with the space character. Since PFM
metrics files support only winansi or builtin encoding, unicode encoding will always
be mapped to winansi if a font with a PFM metrics file is used.

> TrueType and OpenType fonts from any source with unicode encoding.
> Standard CJK fonts with a Unicode-based CMap. Unicode-compatible CMaps are easi-

ly identified by the Uni prefix in their name (see Table 4.6).
> Custom CJK fonts with unicode encoding.

This is PDFlib’s main Unicode feature. It is activated by supplying the keyword unicode
as encoding parameter to PDF_load_font(). For TrueType and OpenType fonts this will
force font embedding. In addition to unicode encoding PDFlib supports several other
methods for selecting Unicode characters.

Unicode code pages for PostScript and TrueType fonts. PDFlib supports Unicode ad-
dressing for characters within the Adobe Glyph List (AGL). This kind of Unicode support
is available for Unicode-based TrueType fonts and PostScript fonts with glyph names in
the AGL.

This feature can be activating by using any of PDFlib’s internal code pages, or supply-
ing a suitable custom encoding or code page file (see Section , »User-defined 8-bit en-
codings«, page 79). Strings must be supplied with 8-bit values per character.

8-Bit strings for addressing Unicode segments. PDFlib supports an abbreviated format
which can be used to address up to 256 consecutive Unicode characters starting at an ar-
bitrary offset between U+0000 and U+FFFF. This can be used to easily access a small
range of Unicode characters while still working with 8-bit characters.

This feature can be activated by using the string U+XXXX as the encoding parameter
for PDF_load_font(), where XXXX denotes a hexadecimal offset. Strings must be sup-
plied with 8-bit values per character, where the character value will be added to the sup-
plied offset. For example, using the encoding

U+0400

will select the Cyrillic Unicode section, and 8-bit strings supplied to the text functions
will select the Unicode characters U+0400, U+0401, etc.

Proper Unicode values for cut-and-paste and find operations. PDFlib will include addi-
tional information (a ToUnicode CMap) in the PDF output which helps Acrobat in assign-
ing proper Unicode values for exporting text (e.g., via the clipboard) and searching for

1. See http://www.unicode.org

http://www.unicode.org

84 Chapter 4: Text Handling

text. By default ToUnicode CMaps will be generated for all supported font types, but
they can only be included if Unicode information is available for a given font/encoding
combination. While this is case for most font/encoding combinations, user-defined
Type 3 fonts, for example, may be missing Unicode information. In this case PDFlib will
not be able to generate a ToUnicode CMap, and text export or searching will not work in
Acrobat.

Generation of a ToUnicode CMap can be globally disabled with the unicodemap pa-
rameter, or on a per-font basis with the PDF_load_font() option of the same name. The
default of this parameter/option is true by default. Setting it to false will decrease the
output file size while potentially disabling proper cut-and-paste support in Acrobat.

4.5.2 Unicode Text Formats
The Unicode standard supports several transformation formats for storing the actual
byte values which comprise a Unicode string. These vary in the number of bytes per
character and the ordering of bytes within a character. Unicode strings in PDFlib can be
supplied in UTF-8 or UTF-16 formats with any byte ordering. This can be controlled with
the textformat parameter for all text on page descriptions, and the hypertextformat pa-
rameter for all hypertext elements. The following values are supported for both of these
parameters:
> bytes: one byte in the string corresponds to one character. This is mainly useful for 8-

bit encodings.
> utf8: strings are expected in UTF-8 format.
> utf16: strings are expected in UTF-16 format. A Unicode Byte Order Mark (BOM) at the

start of the string will be evaluated and then removed. If no BOM is present the
string is expected in the machine’s native byte ordering (on Intel x86 architectures,
for example, the native byte order is little-endian, while on Sparc and PowerPPC sys-
tems it is big-endian).

> utf16be: Strings are expected in UTF-16 format in big-endian byte ordering. There is
no special treatment for Byte Order Marks.

> utf16le: Strings are expected in UTF-16 format in little-endian byte ordering. There is
no special treatment for Byte Order Marks.

> auto: equivalent to bytes for 8-bit encodings, and utf16 for wide-character addressing
(unicode, glyphid, or a UCS-2 CMap). This setting will provide proper text interpreta-
tion in most environments which do not use Unicode natively.

The default setting for the textformat parameter is utf16 for Unicode-capable language
bindings, and auto otherwise.

Although the textformat setting is in effect for all encodings, it will be most useful for
unicode encoding. Table 4.3 details the interpretation of text strings for various combi-
nations of font encodings and textformat settings.

Table 4.3 Relationship of font encodings and text format

font encoding textformat = bytes textformat = utf8, utf16, utf16be, or utf16le
8-bit, or builtin en-
coding for TTF/OTF

8-bit codes convert Unicode values to 8-bit codes according to
the chosen encoding1

builtin encoding for
PostScript

8-bit codes not allowed; PDFlib will throw an exception

U+XXXX 8-bit codes will be added to the off-
set XXXX to address Unicode values

convert Unicode values to 8-bit codes according to
the chosen Unicode offset

4.5 Unicode Support 85

4.5.3 Unicode for Hypertext Elements
Unicode can be supplied for various hypertext elements, such as bookmarks, contents
and title of note annotations (see Figure 4.1), standard and user-defined document in-
formation field contents, description and author of file attachments. For details on Uni-
code-enable hypertext items please review the respective function descriptions in Sec-
tion 7.9, »Hypertext Functions«, page 186.

Note The usability of Unicode in hypertext elements heavily depends on the Unicode support avail-
able on the target system. Unfortunately, most systems today are far from being fully Unicode-
enabled in their default configurations. Although Windows NT/2000/XP and Mac OS support
Unicode internally, availability of appropriate Unicode fonts is still an issue.

Hypertext encoding. PDF supports only two encoding schemes for hypertext ele-
ments:
> Unicode in big-ending UTF-16 format.
> PDFDocEncoding, (see Figure 4.2), which is a superset of ISO 8859-1 (Latin 1). Although

PDFDocEncoding and the Windows code page 1252 are quite similar, they differ sub-
stantially in the character range 128-160 (0x80–0xA0).

glyphid 8-bit codes address glyph ids from 0
to 255

Unicode values will be interpreted as glyph ids2

unicode and
UCS2-based CMaps

8-bit codes address Unicode values
from U+0000 to U+00FF

any Unicode value, encoded according to the
chosen text format1

any other CMap
(not UCS2-based)

any single- or multibyte codes
according to the chosen CMap

not allowed; PDFlib will throw an exception

1. If the Unicode character is not available in the font PDFlib will issue a warning and replace it with the space character.
2. If the glyph id is not available in the font PDFlib will issue a warning and replace it with glyph id 0.

Table 4.3 Relationship of font encodings and text format

font encoding textformat = bytes textformat = utf8, utf16, utf16be, or utf16le

Fig. 4.1
Unicode bookmarks (left) and Unicode
text annotations (right)

86 Chapter 4: Text Handling

While PDF allows only Unicode and PDFDocEncoding, PDFlib supports all 8-Bit and Uni-
code-based encodings which are allowed for PDF_load_font(), and will automatically ap-
ply any required conversions.

The hypertextencoding parameter works analogous to the encoding parameter of PDF_
load_font(), and controls the 8-bit encoding of hypertext strings. It can attain any name
of an 8-bit encoding known to PDFlib, including auto (see Section 4.4, »Encoding De-
tails«, page 77). Note that glyphid, builtin, and CMap names are not allowed for this pa-
rameter. The default is auto.

Hypertext format. Similar to the textformat parameter, the format of hypertext
strings can be controlled with the hypertextformat parameter. However, interpretation
of the allowed values is somewhat different for the hypertextformat parameter. While
utf8, utf16, utf16be, and utf16le have the same meaning as for the textformat parameter,
the behavior of bytes and auto is slightly different:
> auto: UTF-16 strings with big-endian BOM will be detected (in C such strings must be

terminated with a double-null), and Unicode output will be generated. If the string
does not start with a big-endian BOM it will be interpreted as an 8-bit encoded string
according to the hypertextencoding parameter (see above). If it contains at least one
character which is not contained in PDFDocEncoding, the complete string will be
converted to a big-endian UTF-16 string, and written to the PDF output as Unicode.
Otherwise it will be written to the PDF output as 8-bit encoded PDFDocEncoding text.

 000 001 002 003 004 005 006 007 010 011 012 013 014 015 016 017

 020 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037

 040 041 042 043 044 045 046 047 050 051 052 053 054 055 056 057

060 061 062 063 064 065 066 067 070 071 072 073 074 075 076 077

100 101 102 103 104 105 106 107 110 111 112 113 114 115 116 117

 120 121 122 123 124 125 126 127 130 131 132 133 134 135 136 137

 140 141 142 143 144 145 146 147 150 151 152 153 154 155 156 157

160 161 162 163 164 165 166 167 170 171 172 173 174 175 176 177

200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217

 220 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237

 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257

260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277

300 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317

 320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337

 340 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357

360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377

0 1 2 3 4 5 6 7 8 9 A B C D E F

0

1 H I J K L M N O

2 ! " # $ % & � () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 � a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~

8 � � � � � � 	
 � �
 � � � � �

9 � � � � � � � � � � � � � � �

A '` � � � � � � � � � � � � �

B � � � � � � � � � � � � � � � �

C � � � � ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª «

D ¬ ­ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º »

E ¼ ½ ¾ ¿ À Á Â Ã Ä Å Æ Ç È É Ê Ë

F Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û

Fig. 4.2
The PDFDocEncoding
character set with hexa-
decimal and octal codes.

4.5 Unicode Support 87

> bytes: one byte in the string corresponds to one character, and the string will be out-
put without any interpretation. This is mainly useful for 8-bit encodings. In addi-
tion, UTF-16 strings with big-endian BOM will automatically be detected. In C, such
strings must be terminated with a double-null unless the length in bytes is explicitly
supplied in the respective function call.

The default setting for the hypertextformat parameter is auto.

4.5.4 Unicode Support in PDFlib Language Bindings

Unicode in the C language binding. Clients of the C language binding must take care
not to use the standard text (PDF_show(), PDF_show_xy(), and PDF_continue_text()) or hy-
pertext functions (PDF_add_bookmark(), etc.) when the text may contain embedded null
characters. In such cases the alternate functions PDF_show2() etc. must be used, and the
length of the string must be supplied separately. This is not a concern for all other lan-
guage bindings since the PDFlib language wrappers internally call PDF_show2() etc. in
the first place.

Unicode-aware language bindings. The following PDFlib language bindings are Uni-
code-capable:
> COM
> .NET
> Java
> Tcl (requires Tcl 8.2 or above)

These language wrappers will correctly deal with Unicode strings provided by the client,
and automatically set certain PDFlib parameters. This has the following consequences:
> Since the language wrapper automatically sets the textformat and hypertextformat

parameters to unicode, these are no longer accessible by the client, and must not be
used.

> Using unicode encoding for page descriptions is the easiest way to deal with encod-
ings.

> Non-Unicode CMaps for standard CJK fonts on page descriptions must be avoided
since the wrapper will always supply Unicode to the PDFlib core; only UCS-2 CMaps
can be used.

The overall effect is basically that clients can provide plain Unicode strings to PDFlib
functions without any additional configuration or parameter settings required.

88 Chapter 4: Text Handling

4.6 Text Metrics, Text Variations, and Box Formatting
4.6.1 Font and Character Metrics

Text position. PDFlib maintains the text position independently from the current
point for drawing graphics. While the former can be queried via the textx/texty parame-
ters, the latter can be queried via currentx/currenty.

Character metrics. PDFlib uses the character and font metrics system used by Post-
Script and PDF which shall be briefly discussed here.

The font size which must be specified by PDFlib users is the minimum distance be-
tween adjacent text lines which is required to avoid overlapping character parts. The
font size is generally larger than individual characters in a font, since it spans ascender
and descender, plus possibly additional space between lines.

The leading (line spacing) specifies the vertical distance between the baselines of ad-
jacent lines of text. By default it is set to the value of the font size. The capheight is the
height of capital letters such as T or H in most Latin fonts. The ascender is the height of
lowercase letters such as f or d in most Latin fonts. The descender is the distance from the
baseline to the bottom of lowercase letters such as j or p in most Latin fonts. The de-
scender is usually negative. The values of capheight, ascender, and descender are mea-
sured as a fraction of the font size, and must be multiplied with the required font size
before being used.

The values of capheight, ascender, and descender for a specific font are supplied in
the font metrics file, and can be queried from PDFlib as follows:

float capheight, ascender, descender, fontsize;
...
font = PDF_load_font(p, "Times-Roman", 0 "auto", "");
PDF_setfont(p, font, fontsize);

capheight = PDF_get_value(p, "capheight", font) * fontsize;
ascender = PDF_get_value(p, "ascender", font) * fontsize;
descender = PDF_get_value(p, "descender", font) * fontsize;

Note The position and size of superscript and subscript cannot be queried from PDFlib since this in-
formation is not contained in AFM metrics files.

CPI calculations. While most fonts have varying character widths, so-called mono-
spaced fonts use the same widths for all characters. In order to relate PDF font metrics to

���������

	�
���	��

�
���	��

����
���

��
�����

Fig. 4.3 Font and character metrics

4.6 Text Metrics, Text Variations, and Box Formatting 89

the characters per inch (CPI) measurements often used in high-speed print environ-
ments, some calculation examples for the mono-spaced Courier font may be helpful. In
Courier, all characters have a width of 600 units with respect to the full character cell of
1000 units per point (this value can be retrieved from the corresponding AFM metrics
file). For example, with 12 point text all characters will have an absolute width of

12 points * 600/1000 = 7.2 points

with an optimal line spacing of 12 points. Since there are 72 points to an inch, exactly 10
characters of Courier 12 point will fit in an inch. In other words, 12 point Courier is a 10
cpi font. For 10 point text, the character width is 6 points, resulting in a 72/6 = 12 cpi
font. Similarly, 8 point Courier results in 15 cpi.

4.6.2 Kerning
Some character combinations can lead to unpleasant appearance. For example, two Vs
next to each other can look like a W, and the distance between T and e must be reduced
in order to avoid ugly white space. This compensation is referred to as kerning. Many
fonts contain comprehensive kerning tables which contain spacing adjustment values
for certain critical letter pairs.

PDFlib supports kerning for PostScript, TrueType and OpenType fonts, but not for
PostScript host fonts on the Mac (fonts fetched from the operating system). There are
two PDFlib controls for the kerning behavior:
> By default, kerning information in a font is not read when loading a font. If kerning

is desired the kerning option must be set in the respective call to PDF_load_font(). This
instructs PDFlib to read the font’s kerning data (if available).

> When a font for which kerning data has been read is used with any text output func-
tion, the positional corrections provided by the kerning data will be applied. How-
ever, kerning can also be disabled by setting the kerning parameter to false:

PDF_set_parameter(p, "kerning", "false"); /* disable kerning */

No kerning

Kerning applied

Character movement caused by kerning

Fig. 4.4 Kerning

90 Chapter 4: Text Handling

Temporarily disabling kerning may be useful, for example, for tabular figures when
the kerning data contains pairs of figures, since kerned figures wouldn’t line up in a
table.

Kerning is applied in addition to any character spacing, word spacing, and horizontal
scaling which may be activated. Note, however, that the combination of horizontal
spacing and kerning only works correctly in Acrobat 4.05 and above, but not any older
versions.

PDFlib does not have any limit for the number of kerning pairs in a font.

4.6.3 Text Variations

Underline, overline, and strikeout text. PDFlib can be instructed to put lines below,
above, or in the middle of text. The stroke width of the bar and its distance from the
baseline are calculated based on the font’s metrics information. In addition, the current
values of the horizontal scaling factor and the text matrix are taken into account when
calculating the width of the bar. PDF_set_parameter() can be used to switch the under-
line, overline, and strikeout feature on or off as follows:

PDF_set_parameter(p, "underline", "true"); /* enable underlines */

The current stroke color is used for drawing the bars. The current linecap and dash pa-
rameters are ignored, however. Aesthetics alert: in most fonts underlining will touch
descenders, and overlining will touch diacritical marks atop ascenders.

Note The underline, overline, and strikeout features are not supported for standard CJK fonts unless
a UCS-2 CMap is used.

Text rendering modes. PDFlib supports several rendering modes which affect the ap-
pearance of text. This includes outline text and the ability to use text as a clipping path.
Text can also be rendered invisibly which may be useful for placing text on scanned im-
ages in order to make the text accessible to searching and indexing, while at the same
time assuring it will not be visible directly. The rendering modes are described in Table
4.4. They can be set with PDF_set_value() and the textrendering parameter.

When stroking text, graphics state parameters such as linewidth and color will be ap-
plied ot the glyph outline. The rendering mode has no effect on text displayed using a
Type 3 font.

PDF_set_value(p, "textrendering", 1); /* set stroked text rendering (outline text) */

Text color. Text will usually be display in the current fill color, which can be set using
PDF_setcolor(). However, if a rendering mode other than 0 has been selected, both stroke
and fill color may affect the text depending on the selected rendering mode.

Table 4.4 Values for the text rendering mode

value explanation value explanation
0 fill text 4 fill text and add it to the clipping path
1 stroke text (outline) 5 stroke text and add it to the clipping path
2 fill and stroke text 6 fill and stroke text and add it to the clipping path
3 invisible text 7 add text to the clipping path

4.6 Text Metrics, Text Variations, and Box Formatting 91

4.6.4 Box Formatting
While PDFlib offers the PDF_stringwidth() function for performing text width calcula-
tions, many clients need easy access to text box formatting and justifying, e.g. to fit a
certain amount of text into a given column. Although PDFlib offers such features, you
shouldn’t think of PDFlib as a full-featured text and graphics layout engine. The PDF_
show_boxed() function is an easy-to-use method for text box formatting with a number
of formatting options. Text may be laid out in a rectangular box either left-aligned,
right-aligned, centered, or fully justified. The first line of text starts at a baseline with a
vertical position which equals the top edge of the supplied box minus the leading. The
bottom edge of the box serves as the last baseline used. For this reason, descenders of
the last text line may appear outside the specified box (see Figure 4.5).

This function justifies by adjusting the inter-word spacing (the last line will be left-
aligned only). Obviously, this requires that the text contains spaces (PDFlib will not in-
sert spaces if the text doesn’t contain any). Advanced text processing features such as
hyphenation are not available – PDFlib simply breaks text lines at existing whitespace
characters. Text is never clipped at the boundaries of the box.

Supplying a feature parameter of blind can be useful to determine whether a string
fits in a given box, without actually producing any output.

ASCII newline characters (ox0A) in the supplied text are recognized, and force a new
paragraph. CR/NL combinations are treated like a single newline character. Other for-
matting characters (especially tab characters) are not supported.

The following is a small example of using PDF_show_boxed(). It uses PDF_rect() to
draw an additional border around the box which may be helpful in debugging:

text = "In an attempt to reproduce sounds more accurately, pinyin spellings often ... ";
fontsize = 13;

font = PDF_load_font(p, "Helvetica", 0, "auto", "");
PDF_setfont(p, font, fontsize);

x = 50;
y = 650;
w = 357;
h = 6 * fontsize;

c = PDF_show_boxed(p, text, x, y, w, h, "justify", "");
if (c > 0) {

/* Not all characters could be placed in the box; act appropriately here */
...

}

In an attempt to reproduce sounds more accurately, pinyin
spellings often differ markedly from the older ones, and
personal names are usually spelled without apostrophes or
hyphens; an apostrophe is sometimes used, however, to
avoid ambiguity when syllables are run together (as in
Chang´an to distinguish it from Chan´gan).

Fig. 4.5 Text box formatting: the bottom edge will serve as the last baseline, not as a clipping border.

92 Chapter 4: Text Handling

PDF_rect(p, x, y, w, h);
PDF_stroke(p);

The following requirements and restrictions of PDF_show_boxed() shall be noted:
> The function supports only the setting byte for the textformat parameter, or the set-

ting auto in combination with an 8-bit encoding.
> Contiguous blanks in the text should be avoided.
> Due to restrictions in PDF’s word spacing support, the space character must be avail-

able at code position 0x20 in the encoding. Although this is the case for most com-
mon encodings, it implies that justification will not work with EBCDIC encoding.

> The simplistic formatting algorithm may fail for unsuitable combinations of long
words and narrow columns since there is no hyphenation support.

> Since the bottom part of the box is used as a baseline, descenders in the last line may
extend beyond the box area.

> Using PDF_show_boxed() with top-down coordinates isn’t exactly intuitive. Please re-
view the information in Section 3.2.1, »Coordinate Systems«, page 47.

> It’s currently not possible to feed the text in multiple portions into the box format-
ting routine. However, you can retrieve the text position after calling PDF_show_
boxed() with the textx and texty parameters.

> The font within the text box can’t be changed.
> Text box formatting is only supported for fonts with 8-bit encodings.

4.7 Chinese, Japanese, and Korean Text 93

4.7 Chinese, Japanese, and Korean Text
4.7.1 CJK support in Acrobat and PDF

Acrobat/PDF supports a set of standard CJK fonts without font embedding, as well as
custom embedded CJK fonts. While embedded CJK fonts will work in all versions of
Acrobat without further ado, using any of the standard CJK fonts in Acrobat requires the
user to do one of the following1:
> Use a localized CJK version of Acrobat.
> If you use any non-CJK version of the full Acrobat product, select the Acrobat install-

er’s option »Asian Language Support« (Windows) or »Language Kit« (Mac). The re-
quired support files (fonts and CMaps) will be installed from the Acrobat product
CD-ROM.

> If you use Acrobat Reader, install one of the Asian Font Packs which are available on
the Acrobat product CD-ROM, or on the Web.2

Printing PDF documents with CJK text. Printing CJK documents gives rise to a number
of issues which are outside the scope of this manual. However, we will supply some use-
ful hints for the convenience of PDFlib users. If you have trouble printing CJK docu-
ments (especially those using the standard fonts) with Acrobat, consider the following:
> Acrobat’s CJK support is based on CID fonts. Printing CID fonts does not work on all

PostScript printers. Native CID font support has only been integrated in PostScript
version 2015, i.e., PostScript Level 1 and early Level 2 printers do not natively support
CID fonts. However, for early Level 2 devices the printer driver is supposed to take
care of this by downloading an appropriate set of compatibility routines to pre-2015
Level 2 printers.

> Due to the large number of characters CID fonts consume very much printer memo-
ry unless font subsetting has been applied. Disk files for full CJK fonts typically are 5
to 10 MB in size. Not all printers have enough memory for printing such fonts. For
example, in our testing we found that we had to upgrade a Level 3 laser printer from
16 MB to 48 MB RAM in order to reliably print PDF documents with CID fonts.

> Non-Japanese PostScript printers do not have any Japanese fonts installed. For this
reason, you must check Download Asian Fonts in Acrobat’s print dialog.

> If you can’t successfully print using downloaded fonts, check Print as image in Acro-
bat’s print dialog. This instructs Acrobat to send a bitmapped version of the page to
the printer (300 dpi, though).

4.7.2 Standard CJK Fonts and CMaps
Historically, a wide variety of CJK encoding schemes has been developed by diverse
standards bodies, companies, and other organizations. Fortunately, all prevalent encod-
ings are supported by Acrobat and PDF by default. Since the concept of an encoding is
much more complicated for CJK text than for Latin text, simple 8-bit encodings no long-
er suffice. Instead, PostScript and PDF use the concept of character collections and char-
acter maps (CMaps) for organizing the characters in a font.

1. This is a good opportunity to praise Ken Lunde’s seminal tome »CJKV information processing – Chinese, Japanese, Korean
& Vietnamese Computing« (O’Reilly 1999, ISBN 1-56592-224-7), as well as his work at Adobe since he’s one of the driving
forces behind CJK support in PostScript and PDF.
2. See http://www.adobe.com/products/acrobat/acrrasianfontpack.html

http://www.adobe.com/products/acrobat/acrrasianfontpack.html

94 Chapter 4: Text Handling

Acrobat supports a number of standard fonts for CJK text. These fonts are supplied
with the Acrobat installation (or the Asian FontPack), and therefore don’t have to be em-
bedded in the PDF file. These fonts contain all characters required for common encod-
ings, and support both horizontal and vertical writing modes. The standard fonts and
CMaps are documented in Table 4.5. The Acrobat 4 fonts can also be used with Acrobat 5,
but the corresponding Acrobat 5 fonts will be used for display and printing if a required
font is not installed on the system.

As can be seen from the table, the default CMaps support most CJK encodings used
on Mac, Windows, and Unix systems, as well as several other vendor-specific encodings.
In particular, the major Japanese encoding schemes Shift-JIS, EUC, ISO 2022, and Uni-
code (UCS-2) are supported. Tables with all supported characters are available from
Adobe1; CMap descriptions can be found in Table 4.6.

Horizontal and vertical writing mode. PDFlib supports both horizontal and vertical
writing modes for standard CJK fonts and CMaps. The mode is selected along with the
encoding by choosing the appropriate CMap name. CMaps with names ending in -H se-
lect horizontal writing mode, while the -V suffix selects vertical writing mode.

Note Some PDFlib functions change their semantics according to the writing mode. For example,
PDF_continue_text() should not be used in vertical writing mode, and the character spacing
must be negative in order to spread characters apart in vertical writing mode.

Table 4.5 Acrobat’s standard fonts and CMaps (encodings) for Japanese, Chinese, and Korean text

locale font name sample supported CMaps (encodings)
Simplified
Chinese

STSong-Light1

STSongStd-Light-Acro2

1. Available in Acrobat 4; Acrobat 5 will substitute these with different fonts.
2. Available in Acrobat 5 only.

GB-EUC-H, GB-EUC-V, GBpc-EUC-H, GBpc-EUC-V,
GBK-EUC-H, GBK-EUC-V, GBKp-EUC-H, GBKp-EUC-V,
GBK2K-H, GBK2K-V, UniGB-UCS2-H, UniGB-UCS2-V

Traditional
Chinese

MHei-Medium1

MSung-Light1

MSungStd-Light-Acro2

B5pc-H, B5pc-V, HKscs-B5-H, HKscs-B5-V, ETen-B5-H,
ETen-B5-V, ETenms-B5-H, ETenms-B5-V, CNS-EUC-H,
CNS-EUC-V, UniCNS-UCS2-H, UniCNS-UCS2-V

Japanese HeiseiKakuGo-W51

HeiseiMin-W31

KozMinPro-Regular-Acro2

83pv-RKSJ-H, 90ms-RKSJ-H, 90ms-RKSJ-V, 90msp-
RKSJ-H, 90msp-RKSJ-V, 90pv-RKSJ-H, Add-RKSJ-H,
Add-RKSJ-V, EUC-H, EUC-V, Ext-RKSJ-H, Ext-RKSJ-V,
H, V, UniJIS-UCS2-H, UniJIS-UCS2-V, UniJIS-UCS2-
HW-H, UniJIS-UCS2-HW-V

Korean HYGoThic-Medium1

HYSMyeongJo-Medium1

HYSMyeongJoStd-Medium-
Acro2

KSC-EUC-H, KSC-EUC-V, KSCms-UHC-H, KSCms-
UHC-V, KSCms-UHC-HW-H, KSCms-UHC-HW-V,
KSCpc-EUC-H, UniKS-UCS2-H, UniKS-UCS2-V

1. See http://partners.adobe.com/asn/developer/typeforum/cidfonts.html for a wealth of resources related to CID fonts,
including tables with all supported glyphs (search for »character collection«).

http://partners.adobe.com/asn/developer/typeforum/cidfonts.html

4.7 Chinese, Japanese, and Korean Text 95

Table 4.6 Predefined CMaps for Japanese, Chinese, and Korean text (from the PDF Reference)

locale supported CMaps description
Simplified
Chinese

GB-EUC-H
GB-EUC-V

Microsoft Code Page 936 (charset 134), GB 2312-80 character set, EUC-CN
encoding

GBpc-EUC-H
GBpc-EUC-V

Macintosh, GB 2312-80 character set, EUC-CN encoding, Script Manager
code 2

GBK-EUC-H, -V Microsoft Code Page 936 (charset 134), GBK character set, GBK encoding
GBKp-EUC-H1

GBKp-EUC-V1
Same as GBK-EUC-H, but replaces half-width Latin characters with
proportional forms and maps code 0x24 to dollar ($) instead of yuan (¥).

GBK2K-H1, -V1 GB 18030-2000 character set, mixed 1-, 2-, and 4-byte encoding
UniGB-UCS1-H
UniGB-UCS1-V

Unicode (UCS-2) encoding for the Adobe-GB1 character collection

Traditional
Chinese

B5pc-H
B5pc-V

Macintosh, Big Five character set, Big Five encoding, Script Manager code 2

HKscs-B5-H1

HKscs-B5-V1
Hong Kong SCS (Supplementary Character Set), an extension to the Big
Five character set and encoding

ETen-B5-H
ETen-B5-V

Microsoft Code Page 950 (charset 136), Big Five character set with ETen
extensions

ETenms-B5-H
ETenms-B5-V

Same as ETen-B5-H, but replaces half-width Latin characters with
proportional forms

CNS-EUC-H, -V CNS 11643-1992 character set, EUC-TW encoding
UniCNS-UCS1-H
UniCNS-UCS1-V

Unicode (UCS-2) encoding for the Adobe-CNS1 character collection

Japanese 83pv-RKSJ-H Macintosh, JIS X 0208 character set with KanjiTalk6 extensions, Shift-JIS
encoding, Script Manager code 1

90ms-RKSJ-H
90ms-RKSJ-V

Microsoft Code Page 932 (charset 128), JIS X 0208 character set with NEC
and IBM extensions

90msp-RKSJ-H
90msp-RKSJ-V

Same as 90ms-RKSJ-H, but replaces half-width Latin characters with
proportional forms

90pv-RKSJ-H Macintosh, JIS X 0208 character set with KanjiTalk7 extensions, Shift-JIS
encoding, Script Manager code 1

Add-RKSJ-H, -V JIS X 0208 character set with Fujitsu FMR extensions, Shift-JIS encoding
EUC-H, -V JIS X 0208 character set, EUC-JP encoding
Ext-RKSJ-H, -V JIS C 6226 (JIS78) character set with NEC extensions, Shift-JIS encoding
H, V JIS X 0208 character set, ISO-2022-JP encoding
UniJIS-UCS2-H, -V Unicode (UCS-2) encoding for the Adobe-Japan1 character collection
UniJIS-UCS2-HW-H
UniJIS-UCS2-HW-V

Same as UniJIS-UCS2-H, but replaces proportional Latin characters with
half-width forms

Korean KSC-EUC-H, -V KS X 1001:1992 character set, EUC-KR encoding
KSCms-UHC-H
KSCms-UHC-V

Microsoft Code Page 949 (charset 129), KS X 1001:1992 character set plus
8822 additional hangul, Unified Hangul Code (UHC) encoding

KSCms-UHC-HW-H
KSCms-UHC-HW-V

Same as KSCms-UHC-H, but replaces proportional Latin characters with
half-width forms

KSCpc-EUC-H Macintosh, KS X 1001:1992 character set with Mac OS KH extensions, Script
Manager Code 3

UniKS-UCS2-H -V Unicode (UCS-2) encoding for the Adobe-Korea1 character collection

1. Only available for PDF 1.4 / Acrobat 5 and above

96 Chapter 4: Text Handling

CJK text encoding for standard CMaps. The client is responsible for supplying text en-
coded such that it matches the requested CMap. PDFlib does not check whether the sup-
plied text conforms to the requested CMap.

For multi-byte encodings, the high-order byte of a character must appear first. Alter-
natively, the byte ordering and text format can be selected with the textformat parame-
ter (see Section 4.5.1, »Unicode for Page Descriptions«, page 83) provided a UCS2-based
CMap is used.

Since several of the supported encodings may contain null characters in the text
strings, C developers must take care not to use the PDF_show() etc. functions, but in-
stead PDF_show2() etc. which allow for arbitrary binary strings along with a length pa-
rameter. For all other language bindings, the text functions support binary strings, and
PDF_show2() etc. are not required.

Restrictions for standard CJK fonts and CMaps. The following features are not sup-
ported for standard CJK fonts in combination with CMaps other than UCS-2:
> calculating the extent of text with PDF_stringwidth()
> box formatting with PDF_show_boxed()
> activating underline/overline/strikeout mode
> retrieving the textx/texty position

These restrictions hold for standard CJK fonts. Note that although the widths of CJK text
cannot be queried in these cases, the width will nevertheless be generated correctly in
the PDF output. Also note the above features are well supported for custom CJK fonts.

Standard CJK font example. Standard CJK fonts can be selected with the PDF_load_
font() interface, supplying the CMap name as the encoding parameter. However, you
must take into account that a given CJK font supports only a certain set of CMaps (see
Table 4.5). The KozMinPro-Regular-Acro sample in Table 4.5 has been generated with the
following code:

font = PDF_load_font(p, "KozMinPro-Regular-Acro", 0, "Ext-RKSJ-H", "");
PDF_setfont(p, font, 24);
PDF_set_text_pos(p, x, y);
PDF_show(p, "\x93\xFA\x96\x7B\x8C\xEA");

These statements locate one of the Japanese standard fonts, choosing a Shift-JIS-com-
patible CMap (Ext-RKSJ) and horizontal writing mode (H). The fontname parameter must
be the exact name of the font without any encoding or writing mode suffixes. The
encoding parameter is the name of one of the supported CMaps (the choice depends on
the font) and will also indicate the writing mode (see below). PDFlib supports all of Acro-
bat’s default CMaps, and will complain when it detects a mismatch between the re-
quested font and the CMap. For example, PDFlib will reject a request to use a Korean
font with a Japanese encoding.

4.7.3 Custom CJK Fonts
In addition to Acrobat’s standard CJK fonts PDFlib supports custom CJK fonts (fonts out-
side the list in Table 4.5) in the TrueType and OpenType formats. A custom CJK font will
be processed as follows:
> The font will be converted to a CID font and embedded in the PDF output regardless

of the embedding setting provided by the client. Since PDFlib respects font embed-

4.7 Chinese, Japanese, and Korean Text 97

ding restrictions which may be defined in a font, fonts which do not allow embed-
ding can not be used as custom CJK fonts.

> By default, font subsetting will be applied to all embedded custom CJK fonts; this can
be controlled with various parameters, see Section 4.3, »Font Embedding and Subset-
ting«, page 74.

> Proportional Latin characters and half-width characters are fully supported for cus-
tom CJK fonts.

Note Original Composite Fonts (OCF) and raw PostScript CID fonts are not supported.

Supported encodings for custom CJK fonts. Custom CJK fonts can be used with the fol-
lowing encodings:
> unicode encoding.
> 8-bit encodings (although these are unlikely to be useful for CJK text)
> glyphid addressing (see Section 4.2.2, »TrueType and OpenType Fonts«, page 71)

The textformat parameter will be evaluated for custom CJK fonts.

Restrictions for custom CJK fonts. The following features are not currently supported
for custom CJK fonts:
> Encodings other than those listed above can not be used. In particular, the CMaps

listed in Table 4.6 can not be used with custom CJK fonts, but only with the standard
CJK fonts.

> Vertical writing mode is not implemented.
> Font names must be encoded in ASCII. For example, Japanese font names can not be

used; instead, the corresponding English font name must be provided.

Custom CJK font example. The following example uses the ArialUnicodeMS font to
display some Chinese text. The font must either be installed on the system or must be
configured according to Section 4.3.1, »Making Fonts available to PDFlib«, page 74):

/* This is not required if the font is installed on the system */
PDF_set_parameter(p, "FontOutline", "ArialUnicodeMS=ARIALUNI.TTF");
font = PDF_load_font(p, "ArialUnicodeMS", 0, "unicode", "");

PDF_setfont(p, font, 24);
PDF_set_text_pos(p, x, y);

/* We use UTF-16 format with big-endian (BE) byte ordering */
PDF_set_parameter(p, "textformat", "utf16be");
PDF_show2(p, "\x4e\x00\x50\x0b\x4e\xba", 6);

98 Chapter 4: Text Handling

4.8 Placing and Fitting Text
The function PDF_fit_textline() for placing a single line of text on a page offers a wealth
of formatting options. The most important options will be discussed in this chapter us-
ing some common application examples. A complete description of these options can
be found in Table 7.10. Most options for PDF_fit_textline() are identical to those of PDF_
fit_image() . Therefore we will only use text-related examples here; it is recommended
to take a look at the examples in Section 5.3, »Placing Images and Imported PDF Pages«,
page 111, for an introduction.

The examples below demonstrate only the relevant call of the function PDF_fit_
textline() , assuming that the required font has already been loaded and set in the de-
sired font size.

PDF_fit_textline() uses the so-called text box to determine the positioning of the text:
the width of the text box is identical to the width of the text, and the box height is iden-
tical to the height of capital letters in the font. The text box can be extended to the left
and right or top and bottom using the margin option. The margin will be scaled along
with the text line.

4.8.1 Simple Text Placement

Placing text in the bottom center. We place text at the reference point such that the
text box will be positioned with the center of its bottom line at the reference point (see
Figure 4.6):

PDF_fit_textline(p, text, 297, 0, "position {50 0}");

This code fragment places the text box with the bottom center (position {50 0}) at the ref-
erence point (297, 0).

Placing text in the top right corner. Now we place the text at the reference point such
that the text box will be placed with the upper right corner at the reference point (see
Figure 4.7):

PDF_fit_textline(p, text, 595, 842, "position 100");

Kraxi

Kraxi
Fig. 4.6

Placing text in the
bottom center

Fig. 4.7
Placing text in the upper
right corner

4.8 Placing and Fitting Text 99

This code fragment places the text box with the upper right corner (position 100) at the
reference point (595, 842).

Placing text with a margin. To extend the previous example we can add a horizontal
margin to the text to achieve a certain distance to the right. This may be useful for plac-
ing text in table columns:

PDF_fit_textline(p, text, 595, 842, "position 100 margin {20 0}");

4.8.1 Placing Text in a Box

Placing centered text in a box. We define a box and place the text centered within the
box (see Figure 4.8):

PDF_fit_textline(p, text, 10, 200, "boxsize {500 220} position 50");

This code fragment places the text centered (position 50) in a box with the lower left cor-
net at (10, 200), 500 units wide and 220 units high (boxsize {500 220}).

Proportionally fitting text to a box. We extend the previous example and fit the text
into the box completely (see Figure 4.9):

PDF_fit_textline(p, text, 10, 200, "boxsize {500 220} position 50 fitmethod meet");

Note that the font size will be changed when text is fit into the box with fitmethod meet.

Completely fitting text to a Box. We can further modify the previous example such
that the text will not be fit into the box proportionally, but completely covers the box.
However, this combination will only rarely be used since the text may be distorted (see
Figure 4.10):

PDF_fit_textline(p, text, 10, 200, "boxsize {500 220} position 50 fitmethod entire");

Kraxi

Fig. 4.8
Placing centered text in a
box

Fig. 4.10
Completely fitting text to a
box

Kraxi Kraxi

Fig. 4.9
Proportionally fitting text to
a box

100 Chapter 4: Text Handling

4.8.1 Aligning Text

Simple alignment. Our next goal is to rotate text such that its original lower left cor-
ner will be placed at a given reference point (see Figure 4.11). This may be useful, for ex-
ample, for placing a rotated column heading in a table header:

PDF_fit_textline(p, text, 5, 5, "orientate west");

This code fragment orientates the text to the west (90˚ counterclockwise) and then
translates it the lower left corner of the rotated text to the reference point (5, 5).

Aligning text at a vertical line. Positioning text along a vertical line (i.e., a box with
zero width) is a somewhat extreme case which may be useful nevertheless (see Figure
4.12):

PDF_fit_textline(p, text, 0, 0, "boxsize {0 600} position {0 50} orientate west");

This code fragment rotates the text, and places it at the center of the line from (0, 0) to
(0, 600).

K
ra
x
i

K
ra
x
i

Fig. 4.11
Simple Aligning

Fig. 4.12
Aligning text at a vertical line

5.1 Importing Raster Images 101

5 Importing and Placing Objects
PDFlib offers a variety of features for importing raster images and pages from existing
PDF documents, and placing them on the page. This chapter covers the details of deal-
ing with raster images and importing pages from existing PDF documents. It also pre-
sents samples which demonstrate how to place images and PDF pages on an output
page.

5.1 Importing Raster Images
5.1.1 Basic Image Handling

Embedding raster images with PDFlib is easy to accomplish. First, the image file has to
be opened with a PDFlib function which does a brief analysis of the image parameters.
The PDF_load_image() function returns a handle which serves as an image descriptor.
This handle can be used in a call to PDF_fit_image(), along with positioning and scaling
parameters:

if ((image = PDF_load_image(p, "jpeg", "image.jpg", 0, "")) == -1) {
fprintf(stderr,"Error: Couldn't read image file.\n");

} else {
PDF_fit_image(p, image, 0.0, 0.0, "");
PDF_close_image(p, image);

}

The last argument to PDF_fit_image() is an option list which supports a variety of op-
tions for positioning, scaling, and rotating the image. Details regarding these options
are discussed in Section 5.3, »Placing Images and Imported PDF Pages«, page 111.

Re-using image data. PDFlib supports an important PDF optimization technique for
using repeated raster images. Consider a layout with a constant logo or background on
multiple pages. In this situation it is possible to include the actual image data only once
in the PDF, and generate only a reference on each of the pages where the image is used.
Simply load the image file once, and call PDF_fit_image() every time you want to place
the logo or background on a particular page. You can place the image on multiple pages,
or use different scaling factors for different occurrences of the same image (as long as
the image hasn’t been closed). Depending on the image’s size and the number of occur-
rences, this technique can result in enormous space savings.

Inline images. As opposed to reusable images, which are written to the PDF output as
image XObjects, inline images are written directly into the respective content stream
(page, pattern, template, or glyph description) . This results in some space savings, but
should only be used for small amounts of image data (up to 4 KB) per a recommenda-
tion in the PDF reference. The primary use of inline images is for bitmap glyph descrip-
tions in Type 3 fonts.

Inline images can be generated with the PDF_load_image() interface by supplying the
inline option. Inline images cannot be reused, i.e., the corresponding handle must not be
supplied to any call which accepts image handles. For this reason if the inline option has
been provided PDF_load_image() internally performs the equivalent of

102 Chapter 5: Importing and Placing Objects

PDF_fit_image(p, image, 0, 0, "");
PDF_close_image(p, image);

Scaling and dpi calculations. PDFlib never changes the number of pixels in an import-
ed image. Scaling either blows up or shrinks image pixels, but doesn’t do any downsam-
pling (the number of pixels in an image will always remain the same). A scaling factor of
1 results in a pixel size of 1 unit in user coordinates. In other words, the image will be im-
ported at 72 dpi if the user coordinate system hasn’t been scaled (since there are 72 de-
fault units to an inch).

5.1.2 Supported Image File Formats
PDFlib currently deals with the image file formats described below. If possible, PDFlib
passes the compressed image data unchanged to the PDF output since PDF internally
supports most compression schemes used in common image file formats. This tech-
nique (called pass-through mode in the descriptions below) results in very fast image im-
port, since decompressing the image data and subsequent recompression are not neces-
sary. However, PDFlib cannot check the integrity of the compressed image data in this
mode. Incomplete or corrupt image data may result in error or warning messages when
using the PDF document in Acrobat (e.g., Read less image data than expected).

If an image file can’t be imported successfully PDF_load_image() will return an error
code by default. However, if you need to know more details about the failure set the
imagewarning option in PDF_load_image() to true (see Section 7.6, »Image and Template
Functions«, page 171). Alternatively, the imagewarning parameter can be set on a global
basis:

PDF_set_parameter(p, "imagewarning", "true"); /* enable image warnings */

This will cause PDF_load_image() to raise an exception with more details about the fail-
ure in the corresponding exception message.

PNG images. PDFlib supports all flavors of PNG images (Portable Network Graphics).
PNG images are handled in pass-through mode in most cases. PNG images which make
use of interlacing, contain an alpha channel (which will be lost anyway, see below), or
have 16 bit color depth will have to be uncompressed, which takes significantly longer
than pass-through mode. If a PNG image contains transparency information, the trans-
parency is retained in the generated PDF (see Section 5.1.3, »Image Masks and Transpar-
ency«, page 104). However, alpha channels are not supported by PDFlib.

JPEG images. JPEG images are always handled in pass-through mode. PDFlib supports
the following flavors of JPEG image compression:
> Baseline JPEG compression which accounts for the vast majority of JPEG images.
> Progressive JPEG compression.

JPEG images can be packaged in several different file formats. PDFlib supports all com-
mon JPEG file formats, and will read resolution information from the following flavors:
> JFIF, which is generated by a wide variety of imaging applications.
> JPEG files written by Adobe Photoshop and other Adobe applications. PDFlib applies

a workaround which is necessary to correctly process Photoshop-generated CMYK
JPEG files.

5.1 Importing Raster Images 103

Note PDFlib does not interpret resolution information from JPEG images in the SPIFF file format, nor
color space information from JPEG images in the EXIF file format.

GIF images. GIF images are always handled in pass-through mode (PDFlib does not
implement LZW decompression). PDFlib supports the following flavors of GIF images:
> Due to restrictions in the compression schemes supported by the PDF file format,

the entry in the GIF file called »LZW minimum code size« must have a value of 8 bits.
Unfortunately, there is no easy way to determine this value for a certain GIF file. An
image which contains more than 128 distinct color values will always qualify (e.g., a
full 8-bit color palette with 256 entries). Images with a smaller number of distinct
colors may also work, but it is difficult to tell in advance because graphics programs
may use 8 bits or less as LZW minimum code size in this case, and PDFlib may there-
fore reject the image. The following trick which works in Adobe Photoshop and simi-
lar image processing software is known to result in GIF images which are accepted by
PDFlib: load the GIF image, and change the image color mode from »indexed« to
»RGB«. Now change the image color mode back to »indexed«, and choose a color pal-
ette with more than 128 entries, for example the Mac or Windows system palette, or
the Web palette.

> The image must not be interlaced.

For other GIF image flavors conversion to the PNG graphics format is recommended.

Note In a particular test case PDFlib converted a GIF image to a PDF file which displays just fine, but
results in a PostScript error when printed to a PostScript Level 2 or 3 printer. Since the problem
does not occur with Ghostscript, we consider this a bug in the PostScript interpreter. You can
work around the problem by selecting PostScript Level 1 output in Acrobat’s print dialog.

TIFF images. PDFlib will handle most TIFF images in pass-through mode. PDFlib sup-
ports the following flavors of TIFF images:
> compression schemes: uncompressed, CCITT (group 3, group 4, and RLE), ZIP (=Flate),

LZW (with restrictions), and PackBits (=RunLength) are handled in pass-through
mode; other compression schemes are handled by uncompressing.

> color: black and white, grayscale, RGB, and CMYK images; any alpha channel or mask
which may be present in the file will be ignored.

> TIFF files containing more than one image (see Section 5.1.5, »Multi-Page Image
Files«, page 107)

> Color depth must be 1, 2, 4, or 8 bits per color sample (this is a requirement of PDF).

Multi-strip TIFF images are converted to multiple images in the PDF file which will visu-
ally exactly represent the original image, but can be individually selected with Acrobat’s
TouchUp object tool. Multi-strip TIFF images can be converted to single-strip images
with the tiffcp command line tool which is part of the TIFFlib package.1 The Image-
Magick2 tool always writes single-strip TIFF images.

Some TIFF features (e.g., CIEL*a*b* color space, JPEG compression) and certain combi-
nations of features (e.g., LZW compression and alpha channel or mask, LZW compres-
sion and tiling) are not supported.

Note Converting certain flavors of CCITT group 3 compressed TIFF images with PDFlib may trigger
the message »Read less image data than expected« in Acrobat 4. Since the problem does not

1. See http://www.libtiff.org
2. See http://www.imagemagick.org

http://www.libtiff.org
http://www.imagemagick.org

104 Chapter 5: Importing and Placing Objects

exist in Ghostscript or Acrobat 5, and the image displays just fine despite the error message, we
consider this a bug in Acrobat 4. You may be able to work around it by choosing a different TIFF
compression scheme.

BMP images. BMP images cannot be handled in pass-through mode. PDFlib supports
the following flavors of BMP images:
> BMP versions 2 and 3;
> color depth 1, 4, and 8 bits per component, including 3 x 8 = 24 bit TrueColor;
> black and white or RGB color (indexed and direct);
> uncompressed as well as 4-bit and 8-bit RLE compression;
> PDFlib will not mirror images if the pixels are stored in bottom-up order (this is a

rarely used feature in BMP which is interpreted differently in applications).

CCITT images. Group 3 or Group 4 fax compressed image data are always handled in
pass-through mode. Note that this format actually means raw CCITT-compressed image
data, not TIFF files using CCITT compression. Raw CCITT compressed image files are usu-
ally not supported in end-user applications, but can only be generated with fax-related
software. Since PDFlib is unable to analyze CCITT images, all relevant image parameters
have to be passed to PDF_load_image() by the client.

Raw data. Uncompressed (raw) image data may be useful for some special applica-
tions. The nature of the image is deduced from the number of color components: 1 com-
ponent implies a grayscale image, 3 components an RGB image, and 4 components a
CMYK image.

5.1.3 Image Masks and Transparency

Transparency in PDF. PDF supports various transparency features, all of which are im-
plemented in PDFlib:
> Masking by position: an image may carry the intrinsic information »print the fore-

ground or the background«. This is realized by a 1-bit mask image, and is often used
in catalog images.

> Masking by color value: pixels of a certain color are not painted, but the previously
painted part of the page shines through instead (»ignore all blue pixels in the im-
age«). In TV and video technology this is also known as bluescreening, and is most of-
ten used for combining the weather man and the map into one image.

> PDF 1.4 introduced alpha channels or soft masks. These can be used to create a
smooth transition between foreground and background, or to create semi-transpar-
ent objects (»blend the image with the background«). Soft masks are represented by
1-component images with 1-8 bits per pixel.

PDFlib supports three kinds of transparency information in images: implicit transpar-
ency, explicit transparency, and image masks.

Implicit transparency. In the implicit case, the transparency information from an ex-
ternal image file is respected, provided the image file format supports transparency or
an alpha channel (this is not the case for all image file formats). Transparency informa-
tion is detected in the following image file formats:
> GIF image files may contain a single transparent color value which is respected by

PDFlib.

5.1 Importing Raster Images 105

> PNG image files may contain several flavors of transparency information, or a full al-
pha channel. PDFlib will retain single transparent color values; if multiple color val-
ues with an attached alpha value are given, only the first one with an alpha value be-
low 50 percent is used. A full alpha channel is ignored.

Explicit transparency. The explicit case requires two steps, both of which involve im-
age operations. First, an image must be prepared for later use as a transparency mask.
This is accomplished by opening the image with the mask option. In PDF 1.3, which sup-
ports only 1-bit masks, using this option is required; in PDF 1.4 it is optional. The follow-
ing kinds of images can be used for constructing a mask:
> PNG images
> TIFF images (only single-strip)
> raw image data

Pixel values of 0 in the mask will result in the corresponding area of the masked image
being painted, while high pixel values result in the background shining through. If the
pixel has more than 1 bit per pixel, intermediate values will blend the foreground image
against the background, providing for a transparency effect. In the second step the
mask is applied to another image which itself is acquired through one of the image
functions:

mask = PDF_load_image(p, "png", maskfilename, 0, "mask");
if (mask == -1)

return;
sprintf(optlist, "masked %d", mask);
image = PDF_load_image(p, type, filename, optlist)
if (image == -1)

return;
PDF_fit_image(p, image, x, y, "");

Note the different use of the option list for PDF_load_image(): mask for defining a mask,
and masked for applying a mask to another image.

The image and the mask may have different pixel dimensions; the mask will auto-
matically be scaled to the image’s size.

Note PDFlib converts multi-strip TIFF images to multiple PDF images, which would be masked indi-
vidually. Since this is usually not intended, this kind of images will be rejected both as a mask
as well as a masked target image. Also, it is important to not mix the implicit and explicit cases,
i.e., don’t use images with transparent color values as mask.

Image masks. Image masks are images with a bit depth of 1 (bitmaps) in which 0-bits
are treated as transparent: whatever contents already exist on the page will shine
through the transparent parts of the image. 1-bit pixels are colorized with the current
fill color. The following kinds of images can be used as image masks:
> PNG images
> TIFF images (single- or multi-strip)
> JPEG images (only as soft mask, see below)
> raw image data

Image masks are simply opened with the mask option, and placed on the page after the
desired fill color has been set:

106 Chapter 5: Importing and Placing Objects

mask = PDF_load_image(p, "tiff", maskfilename, 0, "mask");
PDF_setcolor(p, "fill", "rgb", (float) 1, (float) 0, (float) 0, (float) 0);
if (mask != -1) {

PDF_fit_image(p, mask, x, y, "");
}

If you want to apply a color to an image without the 0-bit pixels being transparent you
must use the colorize option (see Section 5.1.4, »Colorizing Images«, page 106).

Soft masks. Soft masks generalize the concept of image masks to masks with more
than 1 bit. They have been introduced in PDF 1.4 and blend the image against some ex-
isting background. PDFlib accepts all kinds of single-channel (grayscale) images as soft
mask. They can be used the same way as image masks, provided the PDF output com-
patibility is at least PDF 1.4.

Ignoring transparency. Sometimes it is desirable to ignore any transparency informa-
tion which may be contained in an image file. For example, Acrobat’s anti-aliasing fea-
ture (also known as »smoothing«) isn’t used for 1-bit images which contain black and
transparent as their only colors. For this reason imported images with fine detail (e.g.,
rasterized text) may look ugly when the transparency information is retained in the
generated PDF. In order to deal with this situation, PDFlib’s automatic transparency
support can be disabled with the ignoremask option when opening the file:

image = PDF_load_image(p, "gif", filename, 0, "ignoremask");

5.1.4 Colorizing Images
Similarly to image masks, where a color is applied to the non-transparent parts of an
image, PDFlib supports colorizing an image with a spot color. This feature works for
black and white or grayscale images in the following formats:
> PNG
> JPEG
> TIFF (single- or multi-strip)
> GIF (since GIF images always use an RGB palette, colorizing is only reasonable when

the palette contains only gray values, and the palette index is identical to the gray
value. PDFlib does not check this condition, however).

In order to colorize an image with a spot color you must supply the colorize option when
opening the image, and supply the respective spot color handle which must have been
retrieved with PDF_makespotcolor():

PDF_setcolor(p, "both", "cmyk", 1, .79, 0, 0);
spot = PDF_makespotcolor(p, "Reflex Blue CV", 0);
sprintf(optlist, "colorize %d", spot);
image = PDF_load_image(p, "tiff", "image.tif", 0, optlist)
if (image != -1) {

PDF_fit_image(p, image, x, y, "");
}

5.1 Importing Raster Images 107

5.1.5 Multi-Page Image Files
PDFlib supports TIFF files which contain more than one image, also known as multi-
page files. In order to use multi-page TIFFs, additional string and numerical parameters
are used in the call to PDF_load_image():

image = PDF_load_image(p, "tiff", filename, 0 "page 2");

The page option indicates that a multi-image file is to be used. The last parameter speci-
fies the number of the image to use. The first image is numbered 1. This option may be
increased until PDF_load_image() returns -1, signalling that no more images are avail-
able in the file.

A code fragment similar to the following can be used to convert all images in a multi-
image TIFF file to a multi-page PDF file:

for (frame = 1; /* */ ; frame++) {
sprintf(optlist, "page %d", frame);
image = PDF_load_image(p, "tiff", filename, 0, optlist);
if (image == -1)

break;
PDF_begin_page(p, width, height);
PDF_fit_image(p, image, 0.0, 0.0, "");
PDF_close_image(p, image);
PDF_end_page(p);

}

108 Chapter 5: Importing and Placing Objects

5.2 Importing PDF Pages with PDI (PDF Import Library)
Note All functions described in this section require PDFlib+PDI. The PDF import library (PDI) is not

part of the PDFlib source code distribution. Although PDI is integrated in all precompiled edi-
tions of PDFlib, you must purchase an additional license key for PDI.

5.2.1 PDI Features and Applications
When the optional PDI (PDF import) library is attached to PDFlib, pages from existing
PDF documents can be imported. PDI contains a parser for the PDF file format, and pre-
pares pages from existing PDF documents for easy use with PDFlib. Conceptually, im-
ported PDF pages are treated similarly to imported raster images such as TIFF or PNG:
you open a PDF document, choose a page to import, and place it on an output page, ap-
plying any of PDFlib’s transformation functions for translating, scaling, rotating, or
skewing the imported page. Imported pages can easily be combined with new content
by using any of PDFlib’s text or graphics functions after placing the imported PDF page
on the output page (think of the imported page as the background for new content). Us-
ing PDFlib and PDI you can easily accomplish the following tasks:
> overlay two or more pages from multiple PDF documents (e.g., add stationary to ex-

isting documents in order to simulate preprinted paper stock);
> place PDF ads in existing documents;
> clip the visible area of a PDF page in order to get rid of unwanted elements (e.g., crop

marks), or scale pages;
> impose multiple pages on a single sheet for printing;
> process multiple PDF/X-conforming documents to create a new PDF/X file;
> add some text (e.g., headers, footers, stamps, page numbers) or images (e.g., company

logo) to existing PDF pages;
> copy all pages from an input document to the output document, and place barcodes

on the pages.

In order to place a PDF background page and populate it with dynamic data (e.g., mail
merge, personalized PDF documents on the Web, form filling) we recommend using PDI
along with PDFlib blocks (see Chapter 6).

5.2.2 Using PDI Functions with PDFlib

General considerations. It is important to understand that PDI will only import the ac-
tual page contents, but not any hypertext features (such as sound, movies, embedded
files, hypertext links, form fields, bookmarks, thumbnails, and notes) which may be
present in the imported PDF document. These hypertext features can be generated with
the corresponding PDFlib functions. Similarly, you can not re-use individual elements
of imported pages with other PDFlib functions. For example, re-using fonts from im-
ported documents for some other content is not possible. Instead, all required fonts
must be configured in PDFlib. If multiple imported documents contain embedded font
data for the same font, PDI will not remove any duplicate font data. On the other hand,
if fonts are missing from some imported PDF, they will also be missing from the gener-
ated PDF output file. As an optimization you should keep the imported document open
as long as possible in order to avoid the same fonts to be embedded multiple times in
the output document.

5.2 Importing PDF Pages with PDI (PDF Import Library) 109

PDI does not change the color of imported PDF documents in any way. For example,
if a PDF contains ICC color profiles these will be retained in the output document.

PDFlib uses the template feature for placing imported PDF pages on the output page.
Since some third-party PDF software does not correctly support the templates, restric-
tions in certain environments other than Acrobat may apply (see Section 3.2.4, »Tem-
plates«, page 51).

PDFlib-generated output which contains imported pages from other PDF documents
can be processed with PDFlib+PDI again. However, due to restrictions in PostScript
printing the nesting level should not exceed 10.

Code fragments for importing PDF pages. Dealing with pages from existing PDF docu-
ments is possible with a very simple code structure. The following code snippet opens a
page from an existing document, and copies the page contents to a new page in the out-
put PDF document (which must have been opened before):

int doc, page, pageno = 1;
char *filename = "input.pdf";

...

doc = PDF_open_pdi(p, filename, "", 0);
if (doc == -1) {

printf("Couldn't open PDF input file '%s'\n", filename);
exit(1);

}
page = PDF_open_pdi_page(p, doc, pageno, "");
if (page == -1) {

printf("Couldn't open page %d of PDF file '%s'\n", pageno, filename);
exit(2);

}

/* dummy page size, will be modified by the adjustpage option */
PDF_begin_page(p, 20, 20);
PDF_fit_pdi_page(p, page, 0, 0, "adjustpage");
PDF_close_pdi_page(p, page);
...add more content to the page using PDFlib functions...
PDF_end_page(p);

The last argument to PDF_fit_pdi_page() is an option list which supports a variety of op-
tions for positioning, scaling, and rotating the image. Details regarding these options
are discussed in Section 5.3, »Placing Images and Imported PDF Pages«, page 111.

Dimensions of imported PDF pages. Imported PDF pages are regarded similarly to im-
ported raster images, and can be placed on the output page using PDF_fit_pdi_page(). By
default, PDI will import the page exactly as it is displayed in Acrobat, in particular:
> cropping will be retained (in technical terms: if a CropBox is present, PDI favors the

CropBox over the MediaBox; see Section 3.2.2, »Page Sizes and Coordinate Limits«,
page 49);

> rotation which has been applied to the page will be retained.

Alternatively, you can use the pdiusebox option to explicitly instruct PDI to use any of
the MediaBox, CropBox, BleedBox, TrimBox or ArtBox entries of a page (if present) for
determining the size of the imported page (see Table 7.28 for details).

110 Chapter 5: Importing and Placing Objects

Many important properties, such as width and height of an imported PDF page, all of
the Box entries, and the number of pages in a document, can be queried via PDFlib’s pa-
rameter mechanism. The relevant parameters are listed in Table 7.27 and Table 7.28.
These properties can be useful in making decisions about the placement of imported
PDF pages on the output page.

5.2.3 Acceptable PDF Documents
Generally, PDI will happily process all kinds of PDF documents which can be opened
with Acrobat, regardless of PDF version number or features used within the file. In order
to import pages from encrypted documents (i.e., files with permission settings or pass-
word) the corresponding master password must be supplied.

However, in rare cases a PDF document or a particular page of a document may be re-
jected by PDI.

If a PDF document or page can’t be imported successfully PDF_open_pdi() and PDF_
open_pdi_page() will return an error code by default. However, if you need to know
more details about the failure set the pdiwarning option in the option lists of these func-
tions to true. Alternatively, the pdiwarning parameter can be set on a global basis:

PDF_set_parameter(p, "pdiwarning", "true"); /* enable PDI warnings */

This will cause PDF_open_pdi() and PDF_open_pdi_page() to raise an exception with
more details about the failure in the corresponding exception message. The following
kinds of PDF documents can not be imported with PDI:
> PDF documents which use a higher PDF version number than the PDF output docu-

ment that is currently being generated. The reason is that PDFlib can no longer make
sure that the output will actually conform to the requested PDF version after a PDF
with a higher version number has been imported. Solution: set the version of the
output PDF to the required level using the compatibility parameter.

> Files with a damaged cross-reference table. You can identify such files by Acrobat’s
warning message File is damaged but is being repaired. Solution: open and resave the
file with Acrobat.

5.3 Placing Images and Imported PDF Pages 111

5.3 Placing Images and Imported PDF Pages
The PDF_fit_image() function for placing raster image and templates, as well as PDF_fit_
pdf_page() for placing imported PDF pages offer a wealth of options for controlling the
placement on the page. This section demonstrates the most important options by look-
ing at some common application tasks. A complete list and descriptions of all options
can be found in Table 7.23.

Embedding raster images is easy to accomplish with PDFlib. The image file must first
be loaded with PDF_load_image(). This function returns an image handle which can be
used along with positioning and scaling options in PDF_fit_image().

Embedding imported PDF pages works along the same line. The PDF page must be
opened with PDF_open_pdi_page() to retrieve a page handle for use in PDF_fit_pdi_
page(). The same positioning and scaling options can be used as for raster images.

All samples in this section work the same for raster images, templates, and imported
PDF pages. Although code samples are only presented for raster images we talk about
placing objects in general. Note that before calling any of the fit functions a call to PDF_
load_image() or PDF_open_pdi() and PDF_open_pdi_page() must be issued. For the sake of
simplicity these calls are not reproduced here.

5.3.1 Scaling, Orientation, and Rotation

Simple Placing. Let’s start with the simplest case (see Figure 5.1): an object will be
placed at a certain position it its original size:

PDF_fit_image(p, image, 80, 100, "");

In this code fragment the object will be placed with its lower left corner at the point
(80, 100) in the user coordinate system. This point is called the reference point. The op-
tion list (the last function parameter) is empty. This means the object will be place in its
original size at the provided reference point.

Placing with Scaling. The following variation is also very easy to use (see Figure 5.2) We
place the object as in the previous example, but will modify the object’s scaling:

PDF_fit_image(p, image, 80, 100, "scale 0.5");

Fig. 5.1
Simple placing

Fig. 5.2
Placing with scaling

112 Chapter 5: Importing and Placing Objects

This code fragment places the object with its lower left corner at the point (80, 100) in
the user coordinate system. In addition, the object will be scaled in x and y direction by a
scaling factor of 0.5, which makes it appear at 50 percent of its original size.

Placing with orientation. In the next code fragment we will orientate the object in di-
rection west (see Figure 5.3):

PDF_fit_image(p, image, 80, 100, "scale 0.5 orientate west");

This code fragment orientates the object towards western direction (90 degrees coun-
terclockwise), and then translates the object’s lower left corner (after applying the
orientate option) to the reference point (x, y). The object will be rotated in itself.

Placing with rotation. Rotating an object (see Figure 5.4) works similarly to orienta-
tion. However, it not only affects the placed object but the whole coordinate system. Be-
fore placing the object the coordinate system will be rotated at the reference point (x, y)
by 90 degrees counterclockwise. The rotated object’s lower right corner (which is the
unrotated object’s lower left corner) will end up at the reference point. The function call
to achieve this looks as follows:

PDF_fit_image(p, image, 80, 100, "scale 0.5 rotate 90");

Since there is no translation in this case the object will be partially moved outside the
page.

Comparing orientation and rotation. Orientation and rotation are quite similar con-
cepts, but are different nevertheless, and you should be aware of these differences. Fig-
ure 5.5 and Figure 5.6 demonstrate the principal difference between the orientate and
rotate options:
> The orientate option rotates the object at the reference point (x, y) and subsequently

translates it. This option supports the direction keywords north, east, west, and south.
> The rotate option rotates the object at the reference point (x, y) without any transla-

tion. This option supports arbitrary rotation angles. These have to be specified nu-
merically in degrees (a full circle has 360 degrees).

Fig. 5.3
Placing with orientation

Fig. 5.4
Placing with rotation

5.3 Placing Images and Imported PDF Pages 113

5.3.1 Adjusting the Page Size
In the next example (see Figure 5.7) we will automatically adjust the page size to the ob-
ject’s size. This can be useful, for example, for archiving images in the PDF format. The
reference point (x, y) can be used to specify whether the page will be exactly the object’s
size, or somewhat larger or smaller. When enlarging the page size (see Figure 5.7) some
border will be kept around the image; when the page size is smaller than the image
some parts of the image will be clipped. Let’s start with exactly matching the page size
to the object’s size:

PDF_fit_image(p, image, 0, 0, "adjustpage");

The next code fragment makes the page size larger by 40 units in x and y direction than
the object, resulting in some border around the object:

PDF_fit_image(p, image, 40, 40, "adjustpage");

The next code fragment makes the page size smaller by 40 units in x and y direction
than the object. The object will be clipped at the page borders, and some area within the
object (with a width of 40 units) will be invisible:

PDF_fit_image(p, image, -40, -40, "adjustpage");

Fig. 5.5
The orientate option

Fig. 5.6
The rotate option

Fig. 5.7
Adjusting the page size. Left to
right: exact, enlarge, shrink

114 Chapter 5: Importing and Placing Objects

In addition to placing by means of x and y coordinates (which specify the object’s dis-
tance from the page edges, or the coordinate axes in the general case) you can also spec-
ify a target box. This is a rectangular area in which the object will be placed subject to
various formatting rules. These can be controlled with the boxsize, fitmethod and position
options.

Fitting an object to a box. First, let’s place a company logo in the upper right area of
the page (see Figure 5.8). The size of the target rectangle where the logo is to appear is
fixed. However, we don’t know how to scale the logo so that it fits into the box while
avoiding any distortion (the ratio of width and height must not be changed). The follow-
ing statement does the job:

PDF_fit_image(p, image, 350, 750, "boxsize {200 100} position 0 fitmethod meet");

This code fragment places the lower left corner of a box which is 200 units wide and 100
units high (boxsize {200 100}) at the point (350, 750). The object’s lower left corner will be
placed at the box’s lower left corner (position 0). The object will be scaled without any
distortion to make its height and/or width exactly fit into the box (fitmethod meet).

This concept offers a broad range of variations. For example, the position option can
be used to specify which point within the object is to be used as the reference point
(specified as a percentage of width and height). The position option will also specify the
reference point within the target box. If both width and height position percentages are
identical it is sufficient to specify a single value. For example, position 50 can be used to
select the object’s and box’s midpoint as reference point for placing the object.

Clipping an object when fitting it to the box. Using another flavor of the fitmethod op-
tion we can clip the object such that it exactly fits into the target box (see Figure 5.9). In
this case the object won’t be scaled:

PDF_fit_image(p, image, 50, 80, "boxsize {100 400} position 50 fitmethod clip");

This code fragment places a box of width 100 and heigth 400 (boxsize {100 400}) at the
coordinates (50, 80). The object will be placed in its original size in the middle of the box
(position 50), and will be cropped if it exceeds the box (fitmethod clip).

Fig. 5.8
Fitting an object

to the box

Fig. 5.9
Clipping an object when
fitting it to the box

5.3 Placing Images and Imported PDF Pages 115

Adjusting an object to the page. Adjusting an object to a given page size can easily be
accomplished by choosing the page as target box for placing the object. The following
statement uses an A4-sized page with dimensions 595 x 842:

PDF_fit_image(p, image, 0, 0, "boxsize {595 842} position 0 fitmethod slice");

In this code fragment a box is placed at the lower left corner of the page. The size of the
box equals the size of an A4 page. The object is placed in the lower left corner of the box
and scaled proportionally until it fully covers the box and therefore the page. If the ob-
ject exceeds the box it will be cropped. Note that fitmethod slice results in the object be-
ing scaled (as opposed to fitmethod clip which doesn’t scale the object). Of course the
position and fitmethod options could also be varied in this example.

Fitting a logo to the page. How can we achieve the rotated company logo in Figure
5.10? It is rotated by 90 degrees counterclockwise, starts in the lower left corner, and
covers the full height of the page:

PDF_fit_image(p, image, 0, 0, "boxsize {595 842} orientate west fitmethod meet");

The reference point is (0, 0) and orientation is specified as orientate west. In order to
make the logo cover the full page height we choose the box height to be equal to the
page height (842), and choose a large enough value for the box’s width (595). The logo’s
proportions should not be changed, therefore we choose fitmethod meet.

Fig. 5.10
Fitting a logo to the page

116 Chapter 5: Importing and Placing Objects

6.1 Overview of the PDFlib Block Concept 117

6 Variable Data and Blocks
PDFlib supports a template-driven PDF workflow for variable data processing. Using the
concept of blocks, imported pages can be populated with variable amounts of text, im-
ages, or PDF graphics which can be pulled from an external source. This can be used to
easily implement applications which require customized PDF documents, for example:
> mail merge
> flexible direct mailings
> transactional and statement processing
> business card personalization

Note The block processing features discussed in this chapter require the PDFlib Personalization Server
(PPS). Although PPS is integrated in all precompiled editions of PDFlib, you must purchase an
additional license key for PPS.The PDFlib Block plugin for Adobe Acrobat is required for creating
blocks in PDF templates.

6.1 Overview of the PDFlib Block Concept
6.1.1 Complete Separation of Document Design and Program Code

PDFlib data blocks make it easy to place variable text over imported pages. In contrast to
simple PDF pages, pages containing data blocks intrinsically carry information about
the required processing which will be performed later on the server side. The PDFlib
block concept completely separates the following tasks:
> A designer creates the page layout, and specifies the location of variable text and im-

age elements along with relevant properties such as font size, color, or image scaling.
After creating the layout as a PDF document, the designer uses the PDFlib Block plug-
in for Acrobat to specify variable data blocks and their associated properties.

> A programmer writes code to connect the information contained in PDFlib blocks on
imported PDF pages with some dynamic information, e.g., database fields. The pro-
grammer doesn’t need to know any details about a block (whether it contains a name
or a ZIP code, the exact location on the page, its formatting, etc.) and is therefore in-
dependent from any layout changes. PDFlib will take care of all block-related details
based on the block properties found in the file.

In other words, the code written by the programmer is »data-blind«, i.e., it is generic and
does not depend on the particulars of any block. For example, the designer may decide
to use the first name of the addressee in a mailing instead of the last name. The generic
block handling code doesn’t need to be changed, and will generate correct output once
the designer changed the block properties with the Acrobat plugin to use the first name
instead of the last name.

Example: adding variable text to a template. Adding dynamic text to a PDF template
is a very common task. The following code fragment will open a page in an input PDF
document (the template), place it on the output page, and fill some variable text into a
text block called firstname:

doc = PDF_open_pdi(p, filename, "", 0);
if (doc == -1) {

printf("Couldn't open PDF template '%s'\n", filename);

118 Chapter 6: Variable Data and Blocks

return (1);
}
page = PDF_open_pdi_page(p, doc, pageno, "");
if (page == -1) {

printf("Couldn't open page %d of PDF template '%s'\n", pageno, filename);
return (2);

}

PDF_begin_page(p, width, height);
PDF_fit_pdi_page(p, page, 0.0, 0.0, "");
PDF_fill_textblock(p, page, "firstname", "Serge", 0, "");
PDF_close_pdi_page(p, page);
PDF_end_page(p);

6.1.2 Block Properties
The behavior of blocks can be controlled with block properties. The properties are as-
signed to a block with the PDFlib Block plugin for Acrobat.

Standard block properties. PDFlib blocks are defined as rectangles on the page which
are assigned a name, a type, and an open set of properties which will later be processed
on the server side. The name is an arbitrary string which identifies the block, such as
firstname, lastname, or zipcode. PDFlib supports the following kinds of blocks:
> Type Text means that the block will hold some textual data.
> Type Image means that the block will hold a raster image. This is similar to importing

a TIFF or JPEG file in a DTP application.
> Type PDF means that the block will hold arbitrary PDF graphics imported from a page

in another PDF document. This is similar to importing an EPS graphic in a DTP appli-
cation.

A block may carry a number of standard properties depending on its type. For example,
a text block may specify the font and size of the text, an image or PDF block may specify
the scaling factor or rotation. For each type of block the PDFlib API offers a dedicated
function for processing the block. These functions search an imported PDF page for a
block by its name, analyze its properties, and place some client-supplied data (text, ras-
ter image, or PDF page) on the new page according to the corresponding block proper-
ties.

Custom block properties. Standard block properties make it possible to quickly imple-
ment variable data processing applications, but these are limited to the set of properties
which are internally known to PDFlib and can automatically be processed. In order to
provide more flexibility, the designer may also assign custom properties to a block.
These can be used to extend the block concept in order to match the requirements of
the most demanding variable data processing applications.

There are no rules for custom properties since PDFlib will not process custom prop-
erties in any way, except making them available to the client. The client code can exam-
ine the custom properties and act in whatever way it deems appropriate. Based on some
custom property of a block the code may make layout-related or data-gathering deci-
sions. For example, a custom property for a scientific application could specify the
number of digits for numerical output, or a database field name may be defined as a
custom block property for retrieving the data corresponding to this block.

6.1 Overview of the PDFlib Block Concept 119

Coordinate systems. The coordinates describing a block reference the PDF default co-
ordinate system. When the page containing the block is placed on the output page, sev-
eral positioning and scaling options may be supplied to PDF_fit_pdi_page(). These pa-
rameters are taken into account when the block is being processed. This makes it
possible to place a template page on the output page multiply, every time filling its
blocks with data. For example, a business card template may be placed four times on an
imposition sheet. The block functions will take care of the coordinate system transfor-
mations, and correctly place the text for all blocks in all invocations of the page. The
only requirement is that the client must place the page and then process all blocks on
the placed page. Then the page can be placed again at a different location on the output
page, followed by more block processing operations referring to the new position, and
so on.

6.1.3 Why not use PDF Form Fields?
Experienced Acrobat users may ask why we implemented a new block concept for
PDFlib, instead of relying on the established form field scheme available in PDF. The pri-
mary distinction is that PDF form fields are optimized for interactive filling, and PDFlib
blocks are targeted at automated filling. Applications which need both interactive and
automated filling can easily achieve this by using a feature which automatically con-
verts form fields to blocks (see Section 6.2.3, »Converting PDF Form Fields to PDFlib
Blocks«, page 123).

Although there are many parallels between both concepts, PDFlib blocks offer sever-
al advantages over PDF form fields as detailed in Table 6.1.

Table 6.1 Comparison of PDF form fields and PDFlib blocks

Feature PDF form fields PDFlib blocks
design objective designed for interactive use designed for automated filling
typographic features (beyond
choice of font and font size)

– kerning, word and character spacing,
underline/overline/strikeout

font control font embedding font embedding and subsetting, encoding
merged result is integral part of PDF
page description

no yes

users can edit merged field contents yes no
extensible set of properties no yes (custom block properties)
color support RGB grayscale, RGB, CMYK, spot color, Lab
PDF/X compatible no yes (both template with blocks and merged

results)

120 Chapter 6: Variable Data and Blocks

6.2 Creating Variable Data Blocks
PDFlib blocks can be created with the PDFlib Block plugin for Adobe Acrobat 5. The Block
plugin and its sibling, the PDF form field conversion plugin, work only with the full ver-
sion of Acrobat, and not with Acrobat Reader.

6.2.1 Creating Blocks in Acrobat with the PDFlib Block Plugin

Installing the PDFlib plugins for Acrobat. To install the PDFlib Block plugin and the
PDF form field conversion plugin (see Section 6.2.3, »Converting PDF Form Fields to
PDFlib Blocks«, page 123) simply copy the plugin files to a subdirectory in the Acrobat
plugin folder. On Windows these are the files Block.api and AcroFormConversion.api, and a
typical location of the PDFlib plugin folder looks as follows:

C:\Program Files\Adobe\Acrobat 5.05\Acrobat\Plug_ins\PDFlib

On Mac OS X the files are called Block and AcroFormConversion, and a typical plugin loca-
tion looks as follows:

/Applications/Adobe Acrobat 5.05/Plug-Ins/PDFlib

Using the PDFlib Block tool. The PDFlib Block plugin to create PDFlib blocks is similar
to the form tool in Acrobat. You can activate the block tool by clicking the block icon

 in the Acrobat toolbar, via the menu item PDFlib Blocks, Block Tool, or by using the
keyboard shortcut B. All blocks on the page will be visible when the block tool is active.
When another Acrobat tool is selected the blocks will be hidden, although they are still
present.

Creating and modifying blocks. Once you selected the block tool you can simply drag
the cross-hair pointer to create a block at the desired position on the page and the de-
sired size. Blocks will always be rectangular with edges parallel to the page edges. When
you create a new block the block properties dialog appears where you can edit various
properties of the block (see Section 6.2.2, »Editing Block Properties«, page 122). The block
tool will automatically create a block name which can be changed in the properties dia-
log. Block names must be unique within a page. You can change the block type in the
General tab to one of Text, Image, or PDF. The General and Custom tabs will always be
available, while only one of the Text, Image, and PDF tabs will be active at a time de-
pending on the chosen block type.

To delete one or more blocks, select it with the block tool and press the Delete key.

Note When using the Acrobat plugin Enfocus PitStop to edit documents which contain PDFlib blocks
you may see the message »This document contains PieceInfo from PDFlib. Press OK to continue
editing or Cancel to abort.« This message can be ignored; it is safe to click OK in this situation.

Fine-tuning block size and position. Using the block tool you can select an existing
block by clicking on it, and move it to a different position. When the pointer is located
near a block corner, the pointer will change to an arrow and you can resize the block. To
adjust the position or size of multiple blocks, select two or more blocks and use the
Align, Center, Distribute, or Size commands from the PDFlib Blocks menu. The position of
one or more blocks can also be changed by using the arrow keys.

6.2 Creating Variable Data Blocks 121

Creating blocks by selecting an image or graphic. As an alternative to manually drag-
ging block rectangles you can use some page content to define the block size. First, make
sure that the menu item PDFlib Blocks, Click Object to define Block is active. Now you can
use the block tool to click on an image on the page in order to create a block with the size
of the image. You can also click on other graphical objects, and the block tool will try to
select the surrounding graphic (e.g., a logo). The Click Object feature is intended as an aid
for defining blocks. If you want to reposition or resize the block you can do so after-
wards without any restriction. The block will not be locked to the image or graphics ob-
ject which was used as a positioning and sizing aid.

The Click Object feature will try to recognize which vector graphics and images form a
logical element on the page. When some page content is clicked its bounding box (the
surrounding rectangle) will be selected unless the object is white or very large. In the
next step other objects which are partially contained in the detected rectangle will be
added to the selected area, and so on. The final area will be used as the basis for the gen-
erated block rectangle. The end result is that the Click Object feature will try to select
complete graphics, and not only individual lines.

The Click Object feature isn’t perfect: it will not always select what you want due to
the nature of the page content. Keep in mind that this feature is only intended as a posi-
tioning aid for quickly placing rectangles.

Importing and exporting blocks. Using the export and import features for blocks it is
possible to share block definitions for a particular page among multiple PDF files. This
is useful for updating the page contents while maintaining existing block definitions.
To export block definitions to a separate file proceed as follows:
> Select the block tool.
> Select the blocks you want to export. Press Ctrl-A to select all blocks.
> Choose PDFlib Blocks, Import and Export, Export..., and enter a file name.

You can import block definitions via PDFlib Blocks, Import and Export, Import... . Upon im-
porting blocks you can choose whether to apply the imported blocks to all pages in the

Fig. 6.1
Editing block properties

122 Chapter 6: Variable Data and Blocks

document, or only to one or more selected pages. If more than one page is selected the
block definitions will be copied unmodified to the selected pages.

Locking blocks. Blocks can be locked to protect them against accidental moving, resiz-
ing, or deleting. With the block tool active, select the block, activate its context menu
(using the right mouse button on Windows, or ctrl-click on the Mac), and select Lock.
While a block is locked you cannot move, resize, or delete it, nor display its properties
dialog.

Using Blocks with PDF/X. Unlike PDF form fields, PDFlib blocks are PDF/X-compatible.
Both the input document containing blocks, as well as the generated output PDF can be
made PDF/X conforming. However, in preparing block files for a PDF/X workflow you
may run into the following problem:
> PDF/X-1, PDF/X-1a, and PDF/X-3 are based on PDF 1.3, and do not support Acrobat 5

files;
> The PDFlib Block plugin requires Acrobat 5 or above.

In order to work around this potential deadlock use the PDFlib Block plugin installed in
Acrobat 5. For saving the generated PDF with blocks in the PDF/X-conforming PDF ver-
sion 1.3 use an additional plugin by callas software called pdfSaveAsPDF1.3. Fully func-
tional demo versions are available from the callas web site1.

6.2.2 Editing Block Properties
When you create a new bl ock or double-click an existing one the properties dialog will
appear where you can edit a block’s properties (see Figure 6.1). As detailed in Section 6.3,
»Standard Properties for automated Processing«, page 125, there are several types of
properties:
> Properties in the General tab apply to all blocks.
> Properties in the Text, Image, and PDF tabs apply only to the respective block type.

Only the tab corresponding to the current block’s type will be active, while the other
two tabs are inactive.

> Properties in the Custom tab can be defined by the user, and apply to any block type.

To change a property’s value, select it in the property list, change its value in the lower
part of the dialog, and click Apply. For some properties you can also click the »...« symbol
in order to define the value using a dedicated dialog box. When you are done editing
properties click OK to close the properties dialog. The properties just defined will be
stored in the PDF file as part of the block definition.

Default properties. In order to save some amount of typing and clicking the block tool
will remember the property values which have been entered into the previous block’s
properties dialog. These values will be reused when you create a new block. Of course
you can override these values with different ones at any time.

Shared properties. By holding the shift key and using the block tool to select several
blocks you can select an arbitrary number of blocks. The Enter key will display the prop-
erties dialog which now applies to all selected blocks. However, since not all properties
can be shared among multiple blocks, only a subset of all properties will be available for

1. See http://www.callassoftware.com

http://www.callassoftware.com

6.2 Creating Variable Data Blocks 123

editing. Section 6.3, »Standard Properties for automated Processing«, page 125, details
which properties can be shared among multiple blocks.

6.2.3 Converting PDF Form Fields to PDFlib Blocks
As an alternative to creating PDFlib blocks manually you can automatically convert PDF
form fields to PDFlib blocks. This is especially convenient if you have complicated PDF
forms which you want to fill automatically with PDFlib, or need to convert a large num-
ber of existing PDF forms for automated filling. In order to convert all form fields on a
page to PDFlib blocks choose PDFlib Blocks, Convert Form Fields, Current Page. To convert all
form fields in a document choose All Pages instead. Finally, you can convert only select-
ed form fields (choose Acrobat’s form tool to select form fields) with All Active Form
Fields.

Form field conversion details. Automatic form field conversion will convert form
fields of type Text to blocks of type Text; other field types will be unaffected. Attributes
of the converted fields will be transformed to the corresponding block properties ac-
cording to Table 6.2.

Binding blocks to the corresponding form fields. In order to keep PDF form fields and
the generated PDFlib blocks synchronized, the generated blocks can be bound to the cor-
responding form fields. This means that the block tool will internally maintain the rela-
tionship of form fields and blocks. When conversion process is activated again, bound
blocks will be updated to reflect the attributes of the corresponding PDF form fields.
Bound blocks are useful to avoid duplicate work: when a form is updated for interactive
use, the corresponding blocks can automatically be updated, too.

If you do not want to keep the converted form fields after blocks have been generat-
ed you can choose the option Delete converted Form Fields in the PDFlib Blocks, Convert
Form Fields, Conversion Options... dialog. This option will permanently remove the form

Table 6.2 Conversion of PDF form fields to PDFlib blocks

PDF form field attribute... ...will be converted to the PDFlib block property
Position General, Rect
Name General, Name
Short Description General, Description
Appearance, Text, Font Text, fontname
Appearance, Text, Size Text, fontsize; »auto« font size will be converted to a fixed font size

of 2/3 of the block height (this may lead to text being clipped)
Appearance, Text, Text Color Text, textcolor and Text, fillcolor
Appearance, Border, Border Color General, bordercolor
Appearance, Border, Background Color General, backgroundcolor
Appearance, Border, Width General, linewidth: Thin=1, Medium=2, Thick=3
Appearance, Common Properties, Form
Field is...

General, Status: Visible=active, Hidden=ignore, Visible but doesn’t
print=ignore, Hidden but printable=active

Appearance, Common Prop., Orientation General, orientate: 0=north, 90=west,180=south,270=east
Options, Default Text, defaulttext
Options, Alignment General, position: Left={0 50}, Center={50 50}, Right={100, 50}

124 Chapter 6: Variable Data and Blocks

fields after the conversion process. Any actions (e.g., JavaScript) associated with the af-
fected fields will also be removed from the document.

6.3 Standard Properties for automated Processing 125

6.3 Standard Properties for automated Processing
PDFlib supports general properties which can be assigned to any type of block. In addi-
tion there are properties which are specific to the block types Text, Image, and PDF. Some
properties are shared, which means that they can be assigned to multiple blocks at once
using the Block plugin.

Properties support the same data types as option lists (see Section 3.1.4, »Option
Lists«, page 39) except handles, plus the additional data type color which contains a col-
or space description and one or more color values.

Many block properties have the same name as options for PDF_fit_image() (e.g.,
fitmethod) and other functions, or as PDFlib parameters (e.g., charspacing). In these cases
the behavior is exactly the same as the one documented for the respective option or pa-
rameter.

Property processing in PDFlib. The PDFlib Block functions PDF_fill_*block() will process
block properties in the following order:
> If the backgroundcolor property is present, the block rectangle will be filled with the

specified color.
> All other properties except bordercolor and linewidth will be processed.
> If the bordercolor property is present the block rectangle will be stroked with the

specified color and linewidth.

There will be no clipping; if you want to make sure that the block contents do not ex-
ceed the block rectangle choose fitmethod clip.

If a separation color is used in a block property the specified spot color name must
either be known to PDFlib internally (see Section 3.3.3, »Spot Colors«, page 54), or must
have been specified earlier in the PDFlib client program using PDF_makespotcolor(). Oth-
erwise the block functions will fail.

General properties. General properties apply to all kinds of blocks (Text, Image, PDF).
They are required for block administration, describe the appearance of the block rectan-
gle itself, and manage how the contents will be placed within block. Table 6.3 lists the
general properties.

Table 6.3 General block properties

keyword type possible values and explanation
block administration
Name1 string Name of the block; maximum length is 127 bytes. Block names must be

unique within a page, but not within a document.
Description string Human-readable description of the block’s function, coded in PDFDocEn-

coding or Unicode (in the latter case starting with a BOM). This property is
for user information only, and will be ignored when processing the block.

Locked2 boolean If true, the block and its properties can not be edited with the Block plugin.
This property will be ignored when processing the block. Default: false.

Rect1 float list Four coordinates of the block (lower left and upper right corner)
Status keyword Keyword describing how this block will be processed (Default: active):

active The block will be fully processed according to its properties.
ignore The block will be ignored.
static No variable contents will be placed; instead, the block’s default

text, image, or PDF contents will be used if available.

126 Chapter 6: Variable Data and Blocks

Text-related properties. Text-related properties apply to blocks of type Text (in addi-
tion to general properties). All text-related properties can be shared. Table 6.4 lists the
text-related properties.

Subtype1 keyword Depending on the block type, one of Text, Image, or PDF.
Type1 keyword always Block
block appearance
backgroundcolor2 color If present, a rectangle will be drawn and filled with the supplied color. This

may be useful to cover existing page contents. Default: None.
bordercolor2 color If present, a rectangle will be drawn and stroked with the supplied color.

Default: None.
linewidth2 float Stroke width of the line used to draw the block rectangle; only used if

strokecolor is set. Default: 1.
content placing
fitmethod2 keyword Strategy to use if the supplied content doesn’t fit into the box. Possible

values are nofit, clip, meet, slice, and entire (see Table 7.23). Default: nofit.
orientate2 keyword Specifies the desired orientation of the content when it is placed (see Table

7.23). Possible values are north, east, south, west. Default: north.
position2 float list One or two values specifying the position of the reference point within the

content (see Table 7.23). Default: 0
rotate2 float Rotation angle in degrees by which the block will be rotated counter-

clockwise before processing begins. The center of the rotation is the
reference point. Default: 0.

1. This property is required in a block; it will automatically be generated by the PDFlib Block plugin.
2. This property can be shared.

Table 6.4 Text-related block properties

keyword type possible values and explanation
charspacing float The character spacing (see Table 7.9). Default: 0
defaulttext string Text which will be used if no substitution text is supplied by the client1

1. The text will be interpreted in winansi encoding or Unicode.

fillcolor color Fill color of the text. Default: black
fontname2

2. This property is required in a text block; it will automatically be enforced by the PDFlib Block plugin.

string Name of the font as required by PDF_load_font()
fontsize2 float Size of the font in points
horizscaling float The horizontal text scaling (see Table 7.9). Default: 100
kerning boolean Kerning behavior (see Table 7.9). Default: false
margin float list 1 or 2 float values describing additional horizontal and vertical extensions

of the text box (see Table 7.10). Default: 0
overline boolean Overline mode (see Table 7.9). Default: false
strikeout boolean Strikeout mode (see Table 7.9). Default: false
strokecolor color Stroke color of the text. Default: black
textrendering float The text rendering mode (see Table 4.4). Default: 0
textrise float The text rise parameter (see Table 7.9). Default: 0
underline boolean Underline mode (see Table 7.9). Default: false
wordspacing float The word spacing (see Table 7.9). Default: 0

Table 6.3 General block properties

keyword type possible values and explanation

6.3 Standard Properties for automated Processing 127

Image-related properties. Image-related properties apply to blocks of type Image (in
addition to general properties). All image-related properties can be shared. Table 6.5
lists the image-related properties.

PDF-related properties. PDF-related properties apply to blocks of type PDF (in addition
to general properties). All PDF-related properties can be shared. Table 6.5 lists the PDF-
related properties.

Table 6.5 Image-related block properties

keyword type possible values and explanation
defaultimage string Path name of an image which will be used if no substitution image is

supplied by the client. It is recommended to use file names without
absolute paths, and use the SearchPath feature (see Section 3.1.6,
»Resource Configuration and File Searching«, page 41) in the PDFlib client
application. This will make block processing independent from platform
and file system details. When the block will be processed the image must
be supplied in a format which is supported by PDF_load_image().

dpi float list One or two values specifying the desired image resolution in pixels per
inch in horizontal and vertical direction. With the value o the image’s
internal resolution will be used if available, or 72 dpi otherwise. This
property will be ignored if the fitmethod property has been supplied with
one of the keywords meet, slice, or entire. Default: 0.

scale float list One or two values specifying the desired scaling factor(s) in horizontal and
vertical direction. This option will be ignored if the fitmethod property has
been supplied with one of the keywords meet, slice, or entire. Default: 1

Table 6.6 PDF-related block properties

keyword type possible values and explanation
defaultpdf string Path name of a PDF document which will be used if no substitution PDF is

supplied by the client. It is recommended to use file names without
absolute paths, and use the SearchPath feature (see Section 3.1.6,
»Resource Configuration and File Searching«, page 41) in the PDFlib client
application. This will make block processing independent from platform
and file system details.

defaultpdfpage float Page number of the page in the default PDF document. Default: 1
scale float list One or two values specifying the desired scaling factor(s) in horizontal and

vertical direction. This option will be ignored if the fitmethod property has
been supplied with one of the keywords meet, slice, or entire. Default: 1

128 Chapter 6: Variable Data and Blocks

6.4 Querying Block Names and Properties
In addition to automatic block processing PDFlib supports some features which can be
used to enumerate block names and query standard and custom properties

6.4.1 Finding Block Names
The client code must not even know the names of the blocks on an imported page since
these can also be queried. The following statement returns the name of block number 5
on the page (block counting starts at 0), or an empty string if no such block exists:

blockname = PDF_get_pdi_parameter(p, "vdp/Blocks[5]/Name", doc, page, 0, &len);

The returned block name can further be used to automatically fill the blocks using
PDFlib’s fill functions, or query block properties, or populate the block with text, image,
or PDF content.

In the path syntax for addressing block properties the following expressions are
equivalent, assuming that the block with the sequential <number> has its Name proper-
ty set to <blockname>:

Blocks[<number>]/
Blocks/<blockname>/

6.4.2 Querying Block Properties
PDFlib clients can query both standard and custom block properties. Custom properties
are useful to supply some information in the imported PDF document which controls
the program processing the document. Custom properties may be used in combination
with standard properties for additional control, or they may completely replace stan-
dard properties. This, however, places the full burden of block processing on the client
programmer. Custom properties can be attached to any type of block.

Both standard and custom properties can be queried with the PDI functions PDF_
get_pdi_value() and PDF_get_pdi_parameter() via a special syntax for the key parameter.
The following statement queries the numerical value of the standard property fontsize
in a block named zipcode on the page identified by the doc and page handles:

if (PDF_get_pdi_value(p, "has/vdp/Blocks/zipcode/fontsize", doc, page, 0))
fontsize = PDF_get_pdi_value(p, "vdp/Blocks/zipcode/fontsize", doc, page, 0)

String parameters can be queried similarly. The following statement queries the value
of the standard property fontname in a block named zipcode on the page identified by
the doc and page handles:

if (PDF_get_pdi_parameter(p, "has/vdp/Blocks/zipcode/fontname", doc, page, 0, &len))
fontname = PDF_get_pdi_parameter(p,

"vdp/Blocks/zipcode/fontname", doc, page, 0, &len);

Note that this method will return only properties which are actually present in the file.
If a queried property is missing, the documented defaults will not be returned.

The values of custom properties can be queried in a similar fashion. The following
statement queries the custom property myprop in a block named zipcode:

6.4 Querying Block Names and Properties 129

if (PDF_get_pdi_parameter(p, "has/vdp/Blocks/zipcode/custom/myprop", doc, page, 0, &len))
fontname = PDF_get_pdi_parameter(p,

"vdp/Blocks/zipcode/custom/myprop", doc, page, 0, &len);

The client may use the returned properties for retrieving data from some external
source, making layout decisions, or driving PDFlib API functions.

Name space for custom properties. In order to avoid confusion when PDF documents
from different sources are exchanged, it is recommended to use an Internet domain
name as a company-specific prefix in all custom property names, followed by a colon ’:’
and the actual property name. For example, ACME corporation would use the following
property names:

acme.com:digits
acme.com:refnumber

Since standard and custom properties are stored differently in the block, standard
PDFlib property names (as defined in Section 6.3, »Standard Properties for automated
Processing«, page 125) will never conflict with custom property names.

130 Chapter 6: Variable Data and Blocks

7.1 Data Types and Naming Conventions 131

7 PDFlib and PDI API Reference
The API reference documents all supported PDFlib functions.

7.1 Data Types and Naming Conventions
PDFlib data types. The exact syntax to be used for a particular language binding may
actually vary slightly from the C syntax shown here in the reference. This especially
holds true for the PDF document parameter (PDF * in the API reference) which has to be
supplied as the first argument to almost all PDFlib functions in the C binding, but not
those bindings which hide the PDF document parameter in an object created by the lan-
guage wrapper.

Table 7.1 details the use of the PDF document type and the string type in all language
bindings. The data types integer, long, and float are not mentioned since there is an obvi-
ous mapping of these types in all bindings. Please refer to the respective language sec-
tion and the examples in Chapter 2 for more language-specific details.

Naming conventions for PDFlib functions. In the C binding, all PDFlib functions live in
a global namespace and carry the common PDF_ prefix in their name in order to mini-
mize namespace pollution. In contrast, several language bindings hide the PDF docu-
ment parameter in an object created by the language wrapper. For these bindings, the
function name given in this API reference must be changed by omitting the PDF_ prefix
and the PDF * parameter used as first argument. For example, the C-like API description

PDF *p;
PDF_open_file(PDF *p, const char *filename);

translates to the following when the function is used from Java:

pdflib p;
p.open_file(String filename);

Table 7.1 Data types in the language bindings

language binding p parameter? PDF_ prefix? string data type binary data type
C (also used in
this API reference)

yes yes const char * 1

1. C language NULL string values and empty strings are considered equivalent.

const char *

C++ no no string2

2. NULL string values must not be used in the C++ binding.

char *
Java no no String byte[]
.NET no no String byte[]
Perl yes yes string string
PHP yes yes string string
Python yes yes string string
RPG yes yes string, but must add x’00’ data
Tcl yes yes string byte array

132 Chapter 7: PDFlib and PDI API Reference

7.2 General Functions
7.2.1 Setup

Table 7.2 lists relevant parameters and values for this section.

Table 7.2 Parameters and values for the setup functions

function key explanation
set_parameter compatibility Set PDFlib’s compatibility mode to one of the strings »1.3«, »1.4«, or »1.5« for

Acrobat 4, 5, or 6. See Section 1.4, »Acrobat Versions and PDFlib Features«, page 16
for details. This parameter must be set before the first call to PDF_open_*(). It will
be ignored if the pdfx parameter is used. Scope: object. Default: »1.4«.

set_parameter pdfx Set the PDF/X conformance level to one of »PDF/X-1:2001« , »PDF/X-1a:2001«,
»PDF/X-3:2002«, or »none« (see Section 3.4, »PDF/X Support«, page 61). Scope:
object.

set_parameter flush Set PDFlib’s flushing strategy to none, page, content, or heavy. See Section 3.1.7,
»Generating PDF Documents in Memory«, page 45 for details. This parameter is
only available in the C and C++ language bindings. Scope: any. Default: page

set_parameter SearchPath Relative or absolute path name of a directory containing files to be read. The
SearchPath can be set multiply; the entries will be accumulated and used in least-
recently-set order (see Section 3.1.6, »Resource Configuration and File Searching«,
page 41). Scope: any.

set_parameter prefix (Deprecated) Resource file name prefix as used in a UPR file. The prefix can be set
multiply. It contains a slash character plus a path name, which in turn may start
with a slash. Scope: any.

set_parameter resourcefile Relative or absolute file name of the PDFlib UPR resource file. The resource file will
be loaded immediately. Existing resources will be kept; their values will be
overridden by new ones if they are set again. Scope: any.

set_parameter asciifile (Only available on iSeries and zSeries). Expect text files (PFA, AFM, UPR, encodings)
in ASCII encoding. Default: true on iSeries; false on zSeries. Scope: any.

set_parameter license Set the PDFlib and/or PDI license keyThe license key can only be set once before the
first call to PDF_begin_page(). Scope: object.

set_parameter licensefile Set the name of a file containing the license keyThe license file can only be set
once before the first call to PDF_begin_page(). Scope: object.

set_value compress Set the compression parameter to a value from 0–9. This parameter does not
affect image data handled in pass-through mode. Scope: page, document.
0 no compression
1 best speed
6 default value
9 best compression

get_value major
minor
revision

Return the major, minor, or revision number of PDFlib, respectively. Scope: any,
null1.

1. May be called with a PDF * argument of NULL or 0.

get_parameter version Return the full PDFlib version string in the format <major>.<minor>.<revision>,
possibly suffixed with additional qualifiers such as beta, rc, etc. Scope: any, null1.

get_parameter scope Return the name of the current scope (see Table 3.1). Scope: any.
set_parameter userpassword Set the user password to the supplied string. Scope: object.
set_parameter master-

password
Set the master password to the supplied string. Scope: object.

set_parameter permissions Set the master password to a combination of the keywords given in Table 3.12.
Scope: object.

7.2 General Functions 133

void PDF_boot(void)
void PDF_shutdown(void)

Boot and shut down PDFlib, respectively.

Scope null

Bindings C: Recommended for the C language binding, although currently not required.

Other bindings: For all other language bindings booting and shutting down is accom-
plished automatically by the wrapper code, and these functions are not available.

PDFlib_api * PDF_boot_dll(void)
void PDF_shutdown_dll(PDFlib_api *PDFlib)

Load the PDFlib DLL at runtime and boot it, or shut down PDFlib and unload the DLL.

PDFlib A pointer to a PDFlib API structure returned by PDF_boot_dll().

Returns If PDF_boot_dll() is successful it will return a pointer to a structure filled with pointers to
all PDFlib API functions. If the DLL cannot be loaded, or a mismatch of major or minor
version number is detected, NULL will be returned.

Details PDF_boot_dll() will attempt to load the PDFlib DLL at runtime, and call PDF_boot(). PDF_
shutdown_dll() will call PDF_shutdown(), and unload the PDFlib DLL. The members of the
structure returned by PDF_boot_dll() have identical names with the corresponding
PDFlib API functions, and can be used by the client. It is an error to use any of these
pointers after calling PDF_shutdown(). This pair of functions should only be called once
per application. The client is responsible for synchronizing calls to this function pair ap-
propriately.

Scope null

Bindings C: These functions are not part of the PDFlib core library, but are available in the auxilia-
ry module pdflibdl.c which must explicitly be linked against the application. These func-
tions are not supported on all platforms.

Other bindings: These functions are not required, and are not available.

int PDF_get_majorversion(void)
int PDF_get_minorversion(void)

Deprecated, use PDF_get_value(p, "major", 0) or PDF_get_value(p, "minor", 0) instead.

PDF *PDF_new(void)

Create a new PDF object with default settings.

Details This function creates a new PDF object, using PDFlib’s internal default error handling
and memory allocation routines.

134 Chapter 7: PDFlib and PDI API Reference

Returns A handle to a PDF object which is to be used in subsequent PDFlib calls. If this function
doesn’t succeed due to unavailable memory it will return NULL (in C) or throw an excep-
tion.

Scope null; this function start object scope, and must always be paired with a matching PDF_
delete() call.

Bindings The data type used for the opaque PDF object handle varies among language bindings.
This doesn’t really affect PDFlib clients, since all they have to do is pass the PDF handle
as the first argument to all functions.

C++: this function is not available since it is hidden in the PDF constructor.
COM, Java: this function is automatically called by the wrapper code, and therefore not
available.

PDF *PDF_new2(void (*errorhandler)(PDF *p, int errortype, const char *msg),
void* (*allocproc)(PDF *p, size_t size, const char *caller),
void* (*reallocproc)(PDF *p, void *mem, size_t size, const char *caller),
void (*freeproc)(PDF *p, void *mem),
void *opaque)

Create a new PDF object with client-supplied error handling and memory allocation
routines.

errorhandler Pointer to a user-supplied error-handling function. The error handler
will be ignored in PDF_TRY/PDF_CATCH blocks.

allocproc Pointer to a user-supplied memory allocation function.

reallocproc Pointer to a user-supplied memory reallocation function.

freeproc Pointer to a user-supplied free function.

opaque Pointer to some user data which may be retrieved later with PDF_get_
opaque().

Returns A handle to a PDF object which is to be used in subsequent PDFlib calls. If this function
doesn’t succeed due to unavailable memory it will return NULL (in C) or throw an excep-
tion.

Details This function creates a new PDF object with client-supplied error handling and memory
allocation routines. Unlike PDF_new(), the caller may optionally supply own procedures
for error handling and memory allocation. The function pointers for the error handler,
the memory procedures, or both may be NULL. PDFlib will use default routines in these
cases. Either all three memory routines must be provided, or none.

Scope null; this function starts object scope, and must always be paired with a matching PDF_
delete() call. No other PDFlib function with the same PDFlib object must be called after
calling this function.

Bindings C++: this function is indirectly available via the PDF constructor. Not all function argu-
ments must be given since default values of NULL are supplied. All supplied functions
must be »C« style functions, not C++ methods.

7.2 General Functions 135

Other bindings: this function is automatically called by the wrapper code, and therefore
not available. In Java, however, it can explicitly called from client code in order to over-
come shortcomings with Java’s finalizer system.

void PDF_delete(PDF *p)

Delete a PDF object and free all internal resources.

Details This function deletes a PDF object and frees all document-related PDFlib-internal re-
sources. Although not necessarily required for single-document generation, deleting
the PDF object is heavily recommended for all server applications when they are done
producing PDF. This function must only be called once for a given PDF object. PDF_
delete() should also be called for cleanup when an exception occurred. PDF_delete() it-
self is guaranteed to not throw any exception. If more than one PDF document will be
generated it is not necessary to call PDF_delete() after each document, but only when
the complete sequence of PDF documents is done.

Scope any; this function starts null scope, i.e., no more API function calls are allowed.

Bindings C++: this function is indirectly available via the PDF destructor.

Java: this function is automatically called by the wrapper code, and therefore not avail-
able.

7.2.2 Document and Page
Table 7.3 lists relevant parameters and values for this section. Section 7.9.1, »Document
Open Action and Open Mode«, page 186 presents additional relevant parameters.

int PDF_open_file(PDF *p, const char *filename)

Create a new PDF file using the supplied file name.

filename Name of the PDF output file to be generated. Only 8-bit characters are sup-
ported in the file name; Unicode or embedded null characters are not supported.

Table 7.3 Parameters and values for the document and page functions

function key explanation
set_parameter openwarning Enable or suppress warnings related to opening the PDF output file. Possible

values are true and false. Scope: any. Default: false.
set_value pagewidth

pageheight
Change the page size of the current page. Scope: page, path.

set_parameter topdown If true, the origin of the coordinate system at the beginning of a page, pattern, or
template will be assumed in the top left corner of the page, and y coordinates will
increase downwards; otherwise the default coordinate system will be used (see
Section 3.2.1, »Coordinate Systems«, page 47). Scope: document. Default: false.

get_value pagewidth
pageheight

Get the page size of the current page. Scope: page, path.

set_value CropBox,
BleedBox,
ArtBox,
TrimBox

Change one of the box parameters of the current page. These parameters must
only be used within a page description. The parameter name must be followed by
a slash ’/’ character and one of llx, lly, urx, ury, for example: CropBox/llx (see
Section 3.2.2, »Page Sizes and Coordinate Limits«, page 49 for details). Scope: page.

136 Chapter 7: PDFlib and PDI API Reference

If filename is empty, the PDF document will be generated in memory instead of on
file, and the generated PDF data must be fetched by the client with the PDF_get_buffer()
function. PDF_open_file() will always succeed in this case, and never return the -1 (in
PHP: 0) error value.

The special file name »–« can be used for generating PDF on the stdout channel (this
obviously does not apply to environments which don’t support the notion of a stdout
channel, such as Mac OS 9). On Windows it is OK to use UNC paths or mapped network
drives.

Returns -1 (in PHP: 0) on error, and 1 otherwise. If the openwarning parameter is set to true this
function will throw an exception if the PDF output file cannot be opened for writing.

Details This function creates a new PDF file using the supplied filename. PDFlib will attempt to
open a file with the given name, and close the file when the PDF document is finished.

Scope object; this function starts document scope if the file could successfully be opened, and
must always be paired with a matching PDF_close() call.

Params openwarning

Bindings C++: this function is equivalent to the deprecated overloaded open() call.
C, C++, Java, JScript: take care of properly escaping the backslash path separator. For ex-
ample, the following denotes a file on a network drive: \\\\malik\\rp\\foo.pdf.

int PDF_open_fp(PDF *p, FILE *fp)

Open a new PDF file, using the supplied file handle.

fp Pointer to a C-style FILE structure to which the generated output PDF will be writ-
ten. On Mac, Windows, and AS/400 the fp file handle must have been opened in binary
mode, which is necessary for PDF output. On Windows PDFlib changes the output mode
of the supplied file handle to binary mode itself.

Returns -1 on error, and 1 otherwise.

Scope object; this function starts document scope if fp is not NULL, and must always be paired
with a matching PDF_close() call.

Bindings This function is deprecated, and will be removed in the future. It is only available in the
C and C++ bindings.

C++: this function is equivalent to the deprecated overloaded open() call.

void PDF_open_mem(PDF *p, size_t (*writeproc)(PDF *p, void *data, size_t size))

Open a new PDF in memory, and install a callback for fetching the data.

writeproc Callback function which will be called by PDFlib in order to submit (portions
of) the generated PDF data.

Details This function opens a new PDF document in memory, without writing to a disk file. The
callback function must return the number of bytes written. If the return value doesn’t
match the size argument supplied by PDFlib, an exception will be thrown, and PDF gen-
eration stops. The frequency of writeproc calls is configurable with the flush parameter.

7.2 General Functions 137

The default value of the flush parameter is page (see Section 3.1.7, »Generating PDF Docu-
ments in Memory«, page 45 for details).

Scope object; this function starts document scope, and must always be paired with a matching
PDF_close() call.

Bindings This function is only available in the C and C++ bindings.

C++: this function is equivalent to the deprecated overloaded open() call. writeproc must
be a C-style function, not a C++ method.
Other bindings: use PDF_open_file() with an empty file name in order to create PDF doc-
uments in memory.

const char * PDF_get_buffer(PDF *p, long *size)

Get the contents of the PDF output buffer. The result must be used by the client before
calling any other PDFlib function.

size C-style Pointer to a memory location where the length of the returned data in
bytes will be stored.

Returns A buffer full of binary PDF data for consumption by the client. It returns a language-spe-
cific data type for binary data according to Table 7.1. The returned buffer can be used un-
til the end of the surrounding object scope.

Details Fetch the full or partial buffer containing the generated PDF data. If this function is
called between page descriptions, it will return the PDF data generated so far. If it is
called after PDF_close() it returns the remainder of the PDF document. If there is only a
single call to this function which happens after PDF_close() the returned buffer is guar-
anteed to contain the complete PDF document in a contiguous buffer.

Since PDF output contains binary characters, client software must be prepared to ac-
cept non-printable characters including null values.

Scope object, document (in other words: after PDF_end_page() and before PDF_begin_page(), or
after PDF_close() and before PDF_delete(). This function can only be used if an empty
filename has been supplied to PDF_open_file().

Bindings C and C++: the size parameter is only used for C and C++ clients.

Other bindings: an object of appropriate length will be returned, and the size parameter
must be omitted.

void PDF_close(PDF *p)

Close the generated PDF file, and release all document-related resources.

Details This function finishes the generated PDF document, free all document-related resourc-
es, and close the output file if the PDF document has been opened with PDF_open_file().
This function must be called when the client is done generating pages, regardless of the
method used to open the PDF document.

When the document was generated in memory (as opposed to on file), the document
buffer will still be kept after this function is called (so that it can be fetched with PDF_

138 Chapter 7: PDFlib and PDI API Reference

get_buffer()), and will be freed in the next call to PDF_open(), or when the PDFlib object
goes out of scope in PDF_delete().

Scope document; this function terminates document scope, and must always be paired with a
matching call to one of the PDF_open_*() functions.

void PDF_begin_page(PDF *p, float width, float height)

Add a new page to the document.

width, height The width and height parameters are the dimensions of the new page in
points. Acrobat’s page size limits are documented in Section 3.2.1, »Coordinate Sys-
tems«, page 47. A list of commonly used page formats can be found in Table 3.5. The
page size can be changed after calling PDF_begin_page() with the pagewidth and
pageheight parameters. In order to produce landscape pages use width > height. PDFlib
uses width and height to construct the page’s MediaBox. You can use several parameters
to set other box entries in the PDF (see Table 7.2).

Scope document; this function starts page scope, and must always be paired with a matching
PDF_end_page() call.

Params pagewidth, pageheight, CropBox, BleedBox, ArtBox, TrimBox

void PDF_end_page(PDF *p)

Finish the page.

Details This function must be used to finish a page description.

Scope page; this function terminates page scope, and must always be paired with a matching
PDF_begin_page() call.

7.2.3 Parameter Handling
PDFlib maintains a number of internal parameters which are used for controlling
PDFlib’s operation and the appearance of the PDF output. Four functions are available
for setting and retrieving both numerical and string parameters. All parameters (both
keys and values) are case-sensitive. The descriptions of available parameters can be
found in the respective sections.

float PDF_get_value(PDF *p, const char *key, float modifier)

Get the value of some PDFlib parameter with numerical type.

key The name of the parameter to be queried.

modifier An optional modifier to be applied to the parameter. Whether a modifier is
required and what it relates to is explained in the various parameter tables. If the modi-
fier is unused it must be 0.

Returns The numerical value of the parameter.

Scope Depends on key.

7.2 General Functions 139

See also PDF_get_pdi_value()

void PDF_set_value(PDF *p, const char *key, float value)

Set the value of some PDFlib parameter with numerical type.

key The name of the parameter to be set.

value The new value of the parameter to be set.

Scope Depends on key.

const char * PDF_get_parameter(PDF *p, const char *key, float modifier)

Get the contents of some PDFlib parameter with string type.

key The name of the parameter to be queried.

modifier An optional modifier to be applied to the parameter. Whether a modifier is
required and what it relates to is explained in the various parameter tables. If the modi-
fier is unused it must be 0.

Returns The string value of the parameter. The returned string can be used until the end of the
surrounding document scope. If no information is available an empty string will be re-
turned.

Scope Depends on key.

Bindings C and C++: C and C++ clients must not free the returned string. PDFlib manages all string
resources internally.

See also PDF_get_pdi_parameter()

void PDF_set_parameter(PDF *p, const char *key, const char *value)

Set some PDFlib parameter with string type.

key The name of the parameter to be set.

value The new value of the parameter to be set.

Scope Depends on key.

7.2.4 PDFlib Virtual File System (PVF) Functions

void PDF_create_pvf(PDF *p,
const char *filename, int reserved, const void *data, size_t size, const char *optlist)

Create a named virtual read-only file from data provided in memory.

filename The name of the virtual file. This is an arbitrary string which can later be
used to refer to the virtual file in other PDFlib calls.

reserved (C language binding only.) Reserved, must be 0.

140 Chapter 7: PDFlib and PDI API Reference

data A pointer to a memory buffer containing the data comprising the virtual file.

size (C language binding only) The length (in bytes) of the memory block containing
the data.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) according to Table 7.4.

Details The virtual file name can be supplied to any API function which accepts PVF names.
Some of these functions may set a lock on the virtual file until the data is no longer
needed. Virtual files will be kept in memory until they are deleted explicitly with PDF_
delete_pvf(), or automatically in PDF_delete().

If filename refers to an existing virtual file an exception will be thrown. This function
does not check whether filename is already in use for a regular disk file.

Unless the copy option has been supplied, the caller must not modify or free (delete)
the supplied data before a corresponding successful call to PDF_delete_pvf(). Not obey-
ing to this rule will most likely result in a crash.

Scope any

int PDF_delete_pvf(PDF *p, const char *filename, int reserved)

Delete a named virtual file and free the associated data structures (but not the actual
contents).

filename The name of the virtual file as supplied to PDF_create_pvf().

reserved (C language binding only.) Reserved, must be 0.

Returns -1 (in PHP: 0) if the corresponding virtual file exists but is locked, and 1 otherwise.

Details If the file isn’t locked, PDFlib will immediately delete the data structures associated with
filename. If filename does not refer to a valid virtual file this function will silently do
nothing. After successfully calling this function filename may be reused. All virtual files
will automatically be deleted in PDF_delete().

The detailed semantics depend on whether or not the copy option has been supplied
to the corresponding call to PDF_create_pvf(): If the copy option has been supplied, both
the administrative data structures for the file and the actual file contents (data) will be
freed; otherwise, the contents will not be freed, since the client is supposed to do so.

Scope any

Table 7.4 Options for PDF_create_pvf().

option type description
copy boolean PDFlib will immediately create an internal copy of the supplied data. In this case

the caller may dispose of the supplied data immediately after this call. The copy
option will automatically be set to true in the COM, .NET, and Java bindings
(default for other bindings: false). In other language bindings the data will not be
copied unless the copy option is supplied.

7.2 General Functions 141

7.2.5 Exception Handling
Table 7.5 lists relevant parameters and values for this section.

int PDF_get_errnum(PDF *p)

Get the number of the last thrown exception.

Returns The number of the last exception thrown by the PDFlib object.

Scope Between an exception thrown by PDFlib and PDF_delete()

Bindings Only available in the C binding. In the Java binding this method is available as get_
errnum() in the PDFlibException object.

const char *PDF_get_errmsg(PDF *p)

Get the descriptive text of the last thrown exception.

Returns The text of the last exception thrown by the PDFlib object.

Scope Between an exception thrown by PDFlib and PDF_delete()

Bindings Only available in the C binding. In the Java binding this method is available as
getMessage() in the PDFlibException object.

const char *PDF_get_apiname(PDF *p)

Get the name of the API function which threw the last exception.

Returns The name of the PDFlib function which threw the last exception.

Scope Between an exception thrown by PDFlib and PDF_delete()

Bindings Only available in the C binding. In the Java binding this method is available as get_
apiname() in the PDFlibException object.

void *PDF_get_opaque(PDF *p)

Fetch the opaque application pointer stored in PDFlib.

Details This function returns the opaque application pointer stored in PDFlib which has been
supplied in the call to PDF_new2(). PDFlib never touches the opaque pointer, but sup-
plies it unchanged to the client. This may be used in multi-threaded applications for
storing private thread-specific data within the PDF object. It is especially useful for
thread-specific exception handling.

Scope any

Bindings Only available in the C and C++ bindings.

Table 7.5 Parameters and values for exception handling

function key explanation
set_parameter warning Enable or suppress warnings (nonfatal exceptions). Possible values are true and

false. Scope: any. Default: true

142 Chapter 7: PDFlib and PDI API Reference

7.3 Text Functions
7.3.1 Font Handling

Table 7.6 lists relevant parameters and values for this section.

Table 7.6 Parameters and values for the font functions (see Section 7.2.3, »Parameter Handling«, page 138)

function key explanation
set_parameter FontAFM

FontPFM
FontOutline
Encoding
HostFont

The corresponding resource file line as it would appear for the respective category
in a UPR file (see Section 3.1.6, »Resource Configuration and File Searching«, page
41). Multiple calls add new entries to the internal list. (See also prefix and
resourcefile in Table 7.2). Scope: any.

get_value font Return the identifier of the current font which must have been set with PDF_
setfont(). Scope: page, pattern, template.

get_value fontmaxcode Return the number of valid glyph ids for the font identified by the modifier. Scope:
any.

get_parameter fontname The name of the current font which must have been previously set with PDF_
setfont(). Scope: page, pattern, template.

get_parameter fontencoding The name of the encoding or CMap used with the current font. A font must have
been previously set with PDF_setfont(). Scope: page, pattern, template.

get_value fontsize Return the size of the current font which must have been previously set with PDF_
setfont(). Scope: page, pattern, template.

get_value capheight
ascender
descender

Return metrics information for the font identified by the modifier. See Section 4.6,
»Text Metrics, Text Variations, and Box Formatting«, page 88 for more details. The
values are measured in fractions of the font size, and must therefore be multiplied
by the desired font size. Scope: any.

set_parameter fontwarning If set to false, PDF_findfont() and load_font() return -1 (in PHP: 0) if the font/
encoding combination cannot be loaded (instead of throwing an exception).
Default is true. Scope: any.

set_parameter kerning Enables (true) or disables (false) kerning on a global basis. Default: true. Scope:
any.

set_value subsetlimit Disables font subsetting if the document uses more than the given percentage of
characters in the font. Default value: 100 percent. Scope: any.

set_value subsetminsize Subsetting will only be applied to fonts above this size in Kilobyte (see Section 4.3,
»Font Embedding and Subsetting«, page 74). Default: 100 KB. Scope: any.

set_parameter auto-
subsetting

Controls the automatic activation of font subsetting for TrueType and OpenType
fonts (see Section 4.3, »Font Embedding and Subsetting«, page 74). Default: true.
Scope: any.

set_parameter autocidfont Controls the automatic conversion of TrueType fonts with encodings other than
macroman and winansi to CID fonts (see Section 4.3, »Font Embedding and
Subsetting«, page 74). Default: true. Scope: any.

set_parameter unicodemap Controls the generation of ToUnicode CMaps (see Section 4.5.1, »Unicode for Page
Descriptions«, page 83). Default: true. Scope: any.

7.3 Text Functions 143

int PDF_load_font(PDF *p,
const char *fontname, int reserved, const char *encoding, const char *optlist)

Search for a font, and prepare it for later use.

fontname The name of the font as configured in PDFlib. Case is significant.

reserved (C language binding only.) Reserved, must be 0.

encoding The encoding to be used with the font, which must be one of the following:
> one of the predefined 8-bit encodings winansi, macroman, macroman_euro, ebcdic,

pdfdoc, iso8859-X, or cpXXXX;
> host or auto for an automatically selected encoding;
> the name of a user-defined encoding loaded from file or defined via PDF_encoding_

set_char();
> unicode or U+XXXX for Unicode-based addressing;
> glyphid for glyph id addressing;
> builtin to select the font’s internal encoding;
> the name of a standard CMap. In this case fontname must be the name of a standard

CJK font; custom CJK fonts are only supported with unicode encoding (see Section 4.7,
»Chinese, Japanese, and Korean Text«, page 93);

> an encoding name known to the operating system (not available on all platforms).

Care must be taken to choose an encoding which is compatible with the font, and
matches the available input and desired output. Review Section 4.4, »Encoding Details«,
page 77, for more details. Case is significant for encoding.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) according to Table 7.7.

Returns A font handle for later use with PDF_setfont(). The behavior of this function changes
when the fontwarning parameter or option is set to false. In this case the function re-
turns an error code of -1 (in PHP: 0) if the requested font/encoding combination cannot
be loaded, and does not throw an exception. However, exceptions will still be thrown
when bad parameters are passed.

The returned number – the font handle – doesn’t have any significance to the user
other than serving as an argument to PDF_setfont() and related functions. In particular,
requesting the same font/encoding combination in different documents may result in
different font handles.

Details This function prepares a font for later use with PDF_setfont(). The metrics will be loaded
from memory or from a (virtual or disk-based) metrics file. If the requested font/encod-
ing combination cannot be used due to configuration problem (e.g., a font, metrics, or
encoding file could not be found, or a mismatch was detected), an exception will be
thrown unless the fontwarning parameter is set to false. Otherwise, the value returned
by this function can be used as font argument to other font-related functions.

Scope document, page, pattern, template, glyph

Params See Table 7.6.

PDF/X If PDF/X-1, PDF/X-1a, or PDF/X-3 output is generated the embedding option must be true.

144 Chapter 7: PDFlib and PDI API Reference

int PDF_findfont(PDF *p, const char *fontname, const char *encoding, int embed)

Search for a font, and prepare it for later use. PDF_load_font() is recommended.

fontname The name of the font as configured in PDFlib.

encoding See PDF_load_font().

embed See embedding option of PDF_load_font(): 1 is equivalent to embedding = true.

Returns See PDF_load_font().

Details See PDF_load_font().

Scope document, page, pattern, template, glyph

Params See Table 7.6.

Table 7.7 Options for PDF_load_font(). If the same font is loaded multiply with different options, only the
first set of options will be processed. Conflicting options (except fontwarning) in subseequent calls will be
ignored.

option type description
auto-
subsetting

boolean Dynamically decide whether or not the font will be subset, subject to the
subsetlimit and subsetminsize parameters and the actual usage of glyphs. This
option will be ignored when the subsetting option has been supplied. Default: the
value of the global autosubsetting parameter.

autocidfont boolean TrueType fonts with AGL-based 8-bit encoding except winansi, macroman, builtin
and OpenType fonts without glyph names will automatically be stored as CID
fonts. This avoids problems with certain non-accessible glyphs outside winansi
encoding. Default: the value of the global autocidfont parameter.

embedding boolean Controls whether or not the font will be embedded. This does not have any effect
on Type 3 fonts. If a font is to be embedded, the font outline file must be available
in addition to the metrics information (this is irrelevant for TrueType and
OpenType fonts), and the actual font outline definition will be included in the PDF
output. If a font is not embedded, only general information about the font is
included in the PDF output. Default: false.

fontwarning boolean If true, an exception will be thrown when the requested font/encoding
combination cannot be loaded; If false an error code will be returned. (The
encoding search is under control of the fontwarning parameter, but not under
control of the fontwarning option.) Default: the value of the global fontwarning
parameter.

kerning boolean Controls whether or not kerning values will be read from the font (see Section 4.6,
»Text Metrics, Text Variations, and Box Formatting«, page 88). Default: false.

subsetlimit float Font subsetting will be disabled if the percentage of glyphs used in the document
related to the total number of glyphs in the font exceeds the provided percentage.
Default: the value of the global subsetlimit parameter.

subsetminsize float Font subsetting will be disabled if the size of the original font file is less than the
provided value in KB. Default: the value of the global subsetminsize parameter.

subsetting boolean Controls whether or not the font will be subset, subject to the total number of
glyphs used in the document and the values of the subsetlimit and subsetminsize
options (see Section 4.3, »Font Embedding and Subsetting«, page 74). Default:
false.

unicodemap boolean Controls the generation of ToUnicode CMaps (see Section 4.5.1, »Unicode for Page
Descriptions«, page 83). Default: true.

7.3 Text Functions 145

PDF/X If PDF/X-1, PDF/X-1a, or PDF/X-3 output is generated, embed must be 1.

void PDF_setfont(PDF *p, int font, float fontsize)

Set the current font in the given size.

font A font handle returned by PDF_findfont() or PDF_load_font().

fontsize Size of the font, measured in units of the current user coordinate system. The
font size must not be 0; negative font size will result in mirrored text relative to the cur-
rent transformation matrix.

Details The font must be set on each page before drawing any text. Font settings will not be re-
tained across pages. The current font can be changed an arbitrary number of times per
page.

Scope page, pattern, template, glyph

Params See Table 7.6. This function automatically sets the leading parameter to fontsize.

7.3.2 User-defined (Type 3) Fonts

void PDF_begin_font(PDF *p, char *fontname, int reserved,
float a, float b, float c, float d, float e, float f, const char *optlist)

Start a type 3 font definition.

fontname The name under which the font will be registered, and can later be used
with PDF_load_font().

reserved (C language binding only.) Reserved, must be 0.

a, b, c, d, e, f The elements of the font matrix. This matrix defines the coordinate sys-
tem in which the glyphs will be drawn. The six floating point values make up a matrix
in the same way as in PostScript and PDF (see references). In order to avoid degenerate
transformations, a*d must not be equal to b*c.

A typical font matrix for a 1000 x 1000 coordinate system is [0.001, 0, 0, 0.001, 0, 0].

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) according to Table 7.8.

Details The font may contain an arbitrary number of glyphs, but only 256 glyphs can be access-
ed via an encoding. The defined font can be used until the end of the current document
scope.

Scope document; this function starts font scope, and must always be paired with a matching
PDF_end_font() call.

Table 7.8 Options for PDF_begin_font().

option type description
colorized boolean If true, the font may explicitly specify the color of individual characters. If false, all

characters will be drawn with the current color, and the glyph definitions must
not contain any color operators or images other than masks. Default: false.

146 Chapter 7: PDFlib and PDI API Reference

void PDF_end_font(PDF *p)

Terminate a type 3 font definition.

Scope font; this function terminates font scope, and must always be paired with a matching
PDF_begin_font() call.

void PDF_begin_glyph(PDF *p,
char *glyphname, float wx, float llx, float lly, float urx, float ury)

Start a type 3 glyph definition.

glyphname The name of the glyph. This name must be used in any encoding which
will be used with the font. Glyph names within a font must be unique.

wx The width of the glyph in the glyph coordinate system, as specified by the font’s
matrix.

llx, lly, urx, ury If the font’s colorized option is false (which is default), the coordinates
of the lower left and upper right corners of the glyph’s bounding box. The bounding box
values must be correct in order to avoid problems with PostScript printing. If the font’s
colorized option is true, all four values must be 0.

Details The glyphs in a font can be defined using text, graphics, and image functions. Images,
however, can only be used if the font’s colorized option is true, or the image has been
opened with the mask option. It is strongly suggested to use the inline image feature
(see Section 5.1.1, »Basic Image Handling«, page 101) for defining bitmaps in Type 3 fonts.

Since the complete graphics state will be inherited when the character is drawn, the
glyph definition should explicitly set any aspect of the graphics state which is relevant
for the glyph definition (e.g., linewidth).

Scope font; this function starts glyph scope, and must always be paired with a matching PDF_
end_glyph() call.

void PDF_end_glyph(PDF *p)

Terminate a type 3 glyph definition.

Scope glyph; this function terminates glyph scope, and must always be paired with a matching
PDF_begin_glyph() call.

7.3.3 Encoding Definition

void PDF_encoding_set_char(PDF *p,
const char *encoding, int slot, const char *glyphname, int uv)

Add a glyph name to a custom encoding.

encoding The name of the encoding. This is the name which must be used with PDF_
load_font(). The encoding name must be different from any built-in encoding and all
previously used encodings.

7.3 Text Functions 147

slot The position of the character in the encoding to be defined, with 0 <= slot <= 255. A
particular slot must only be filled once within a given encoding.

glyphname The character’s name.

uv The character’s Unicode value.

Details This function can be called multiply to define up to 256 character slots in an encoding.
More characters may be added to a particular encoding until it has been used for the
first time; otherwise an exception will be raised. Not all code points must be specified;
undefined slots will be filled with .notdef.

There are three possible combinations of glyph name and Unicode value:
> glyphname supplied, uv = 0: this parallels an encoding file without Unicode values;
> uv supplied, but no glyphname supplied: this parallels a codepage file;
> glyphname and uv supplied: this parallels an encoding file with Unicode values;

The defined encoding can be used until the end of the current object scope.

Scope object, document, page, pattern, template, path, font, glyph

7.3.4 Text Output
Note All text supplied to the functions in this section must match the encoding selected with PDF_

load_font(). This applies to 8-bit text as well as Unicode or other encodings selected via a
CMap. Due to restrictions in Acrobat, text strings must not exceed 32 KB in length.

Table 7.9 lists relevant parameters and values for this section.

void PDF_set_text_pos(PDF *p, float x, float y)

Set the current text position.

x, y The current text position to be set.

Details The text position is set to the default value of (0, 0) at the beginning of each page. The
current point for graphics output and the current text position are maintained sepa-
rately.

Scope page, pattern, template, glyph

Params See Table 7.9.

void PDF_show(PDF *p, const char *text)
void PDF_show2(PDF *p, const char *text, int len)

Print text in the current font and size at the current text position.

text The text to be printed.

len (Only for PDF_show2().) Length of text (in bytes) for strings which may contain
null characters. If len = 0 a null-terminated string must be provided.

Details The font must have been set before with PDF_setfont(). The current text position is
moved to the end of the printed text.

Scope page, pattern, template, glyph

148 Chapter 7: PDFlib and PDI API Reference

Params See Table 7.9.

Table 7.9 Parameters and values for the text functions (see Section 7.2.3, »Parameter Handling«, page 138)

function key explanation
set_parameter
get_parameter

textformat Specifies the format in which the text output functions will expect the client-
supplied strings. Possible values are bytes, utf8, utf16, utf16le, utf16be, and auto
(see Section 4.5.2, »Unicode Text Formats«, page 84). Default: auto. Scope: any.

set_value
get_value

leading Set or get the leading, which is the distance between baselines of adjacent lines of
text. The leading is used for PDF_continue_text() and PDF_show_boxed(). It is set
to the value of the font size when a new font is selected using PDF_setfont().
Setting the leading equal to the font size results in dense line spacing (leading = 0
will result in overprinting lines). However, ascenders and descenders of adjacent
lines will generally not overlap. Scope: page, pattern, template.

set_value
get_value

textrise Set or get the text rise parameter. The text rise specifies the distance between the
desired text position and the default baseline. Positive values of text rise move the
text up. The text rise always relates to the vertical coordinate. This may be useful
for superscripts and subscripts. The text rise is set to the default value of 0 at the
beginning of each page. Scope: page, pattern, template.

set_value
get_value

textrendering Set or get the current text rendering mode. It can have one of the values given in
Table 4.4. The text rendering parameter is set to the default of 0 (= solid fill) at the
beginning of each page. Scope: page, pattern, template.

set_value
get_value

horizscaling Set or get the horizontal text scaling to the given percentage, which must be
greater than 0. Text scaling shrinks or expands the text by a given percentage. The
text scaling is set to the default of 100 at the beginning and end of each page. Text
scaling always relates to the horizontal coordinate. Scope: page, pattern,
template, document.

set_value
get_value

charspacing Set or get the character spacing, i.e., the shift of the current point after placing the
individual characters in a string. The spacing is given in units of the current user
coordinate system. It is reset to the default of 0 at the beginning and end of each
page. In order to spread the characters apart use positive values for horizontal
writing mode, and negative values for vertical writing mode. Scope: page, pattern,
template, document.

set_value
get_value

wordspacing Set or get the word spacing, i.e., the shift of the current point after placing
individual words in a text line. In other words, the current point is moved
horizontally after each ASCII space character (0x20). Since only 8-bit encodings
can include an ASCII space character, word spacing does not work with wide-
character addressing, such as unicode, glyphid, or encodings which contain non-
AGL glyph names. The spacing value is given in text space units. It is reset to the
default of 0 at the beginning and end of each page. Scope: page, pattern,
template, document.

get_value textx
texty

Get the x or y coordinate, respectively, of the current text position. These para-
meters are currently not supported for CID fonts. Scope: page, pattern, template.

set_parameter
get_parameter

underline
overline
strikeout

Set or get the current underline, overline, and strikeout modes, which are retained
until they are explicitly changed, or a new page is started. Theses modes can be
set independently from each other, and are reset to false at the beginning of each
page (see Section 4.6, »Text Metrics, Text Variations, and Box Formatting«, page
88). Scope: page, pattern, template.
true underline/overline/strikeout text (does not work for CID fonts)
false do not underline/overline/strikeout text

set_parameter kerning If true, enable kerning for fonts which have been opened with the kerning flag;
disable if false. Default value is true (see Section 4.6, »Text Metrics, Text Variations,
and Box Formatting«, page 88). Scope: any.

7.3 Text Functions 149

Bindings C and C++: for PDF_show() text must not contain null characters, since it is assumed to
be null-terminated; use PDF_show2() for strings which may contain null characters.

Other bindings: PDF_show2() is not available since arbitrary string contents can be sup-
plied with PDF_show().

void PDF_show_xy(PDF *p, const char *text, float x, float y)
void PDF_show_xy2(PDF *p, const char *text, int len, float x, float y)

Print text in the current font at position (x, y).

text The text to be printed.

x,y The position in the user coordinate system where the text will be printed.

len (Only for PDF_show_xy2().) Length of text (in bytes) for strings which may contain
null characters. If len = 0 a null-terminated string must be provided.

Details The font must have been set before with PDF_setfont(). The current text position is
moved to the end of the printed text.

Scope page, pattern, template, glyph

Params See Table 7.9.

Bindings C and C++: for PDF_show_xy() text must not contain null characters, since it is assumed
to be null-terminated; use PDF_show_xy2() for strings which may contain null charac-
ters.

Other bindings: PDF_show_xy2() is not available since arbitrary string contents can be
supplied with PDF_show_xy().

void PDF_continue_text(PDF *p, const char *text)
void PDF_continue_text2(PDF *p, const char *text, int len)

Print text at the next line.

text The text to be printed. If this is an empty string, the text position will be moved
to the next line anyway.

len (Only for PDF_continue_text2().) Length of text (in bytes) for strings which may
contain null characters. If len = 0 a null-terminated string must be provided as in PDF_
continue_text().

Details The positioning of text (x and y position) and the spacing between lines is determined
by the leading parameter and the most recent call to PDF_show_xy() or PDF_set_text_
pos(). This function can also be used after PDF_show_boxed() if that function has been
called with mode = left or justify. The current point will be moved to the end of the print-
ed text; the x position for subsequent calls of this function will not be changed.

Using the underline/overline/strikeout parameters with PDF_show() will modify the x
position for PDF_continue_text(). It is recommended to use an additional call to PDF_set_
text_pos() in this situation in order to properly set the x position.

Scope page, pattern, template, glyph; this function should not be used in vertical writing mode.

150 Chapter 7: PDFlib and PDI API Reference

Params See Table 7.9.

Bindings C and C++: for PDF_continue_text() text must not contain null characters, since it is as-
sumed to be null-terminated; use PDF_continue_text2() for strings which may contain
null characters.

Other bindings: PDF_continue_text2() is not available since arbitrary string contents can
be supplied with PDF_continue_text().

void PDF_fit_textline(PDF *p, const char *text, int len, float x, float y, const char *optlist);

Place a single text line at (x, y) with various options.

text The text to be printed.

len (C binding only) Length of text (in bytes) for strings which may contain null char-
acters. If len = 0 a null-terminated string must be provided.

x, y The coordinates of the reference point in the user coordinate system where the
text will be placed, subject to various options.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying placement
details according to Table 7.10.

Details The current graphics state will not be modified by this function. In particular, the cur-
rent text position and the current font will be unaffected.

Scope page, pattern, template, glyph; this function should not be used in vertical writing mode.

Params See Table 7.9.

Table 7.10 Options for PDF_fit_textline()

key type explanation
boxsize float list Two values specifying the width and height of a box, relative to which the text

will be placed and possibly scaled. The lower left corner of the box coincides with
the reference point (x, y). Placing the text and fitting it into the box is controlled
by the position and fitmethod options. If width = 0, only the height is considered,
and vice versa. Fitting the text into the box is not possible in these cases. Default:
{0 0}.

charspacing float The character spacing (see Table 7.9). Default: the current value of the global
charspacing parameter.

7.3 Text Functions 151

fitmethod keyword Specifies the method used to fit the text into the specified box. This option will be
ignored if no box has been specified. Default: nofit.
nofit Position the text only, without any scaling or clipping.
clip Position the text, and clip it at the edges of the box.
meet Position the text according to the position option, and scale it such

that it entirely fits into the box while preserving its aspect ratio.
Generally at least two edges of the text will meet the corresponding
edges of the box. The dpi and scale options are ignored.

slice Position the text according to the position option, and scale it such
that it entirely covers the box, while preserving the aspect ratio and
making sure that at least one dimension of the text is fully contained
in the box. Generally parts of the text’s other dimension will extend
beyond the box, and will therefore be clipped.

entire Position the text according to the position option, and scale it such
that it entirely covers the box. Generally this method will distort the
text. The scale option will be ignored.

font font handle A font handle returned by PDF_load_font(). Default: the current font.
fontsize float (Required if the font option is provided) Size of the font, measured in units of the

current user coordinate system. Default: the current font size.
horizscaling float The horizontal text scaling (see Table 7.9). Default: the current value of the global

horizscaling parameter.
kerning boolean Kerning behavior (see Table 7.9). Default: the current value of the global kerning

parameter.
margin float list 1 or 2 float values describing additional horizontal and vertical extensions of the

text box. Default: 0.
orientate keyword Specifies the desired orientation of the text when it is placed. Default: north.

north upright
east pointing to the right
south upside down
west pointing to the left

overline boolean Overline mode (see Table 7.9). Default: the current value of the global overline
parameter.

position float list One or two values specifying the position of the reference point (x, y) within the
text’s bounding box with {0 0} being the lower left corner of the text box, and
{100 100} the upper right corner. If the boxsize option has been specified, the
position option also specifies the positioning of the target box. The values are
expressed as percentages of the text’s width and height. If both percentages are
equal it is sufficient to specify a single float value. Some examples: {0 50} results in
left-justified text; {50 50} results in centered text; {100 50} results in right-justified
text. Default: 0 (lower left corner)

rotate float Rotate the coordinate system, using the reference point as center and the speci-
fied value as rotation angle in degrees. This results in the box and the text being
rotated. The rotation will be reset when the text has been placed. Default: 0.

strikeout boolean Strikeout mode (see Table 7.9). Default: the current value of the global strikeout
parameter.

textformat keyword The format used to interpret the supplied text (see Section 4.5.2, »Unicode Text
Formats«, page 84). Default: the current value of the global textformat
parameter.

textrendering float The text rendering mode (see Table 4.4). Default: the current value of the global
textrendering parameter.

textrise float The text rise mode (see Table 7.9). Default: the current value of the global text rise
parameter.

Table 7.10 Options for PDF_fit_textline()

key type explanation

152 Chapter 7: PDFlib and PDI API Reference

int PDF_show_boxed(PDF *p, const char *text, float x, float y, float width, float height,
const char *mode, const char *feature)

Format text into a text box according to the requested formatting mode.

text The text to be formatted into the box. The text must not contain any null charac-
ters.

x, y The coordinates of the lower left corner of the text box or the coordinates of the
alignment point if width = 0 and height = 0.

width, height The size of the text box, or 0 for single-line formatting.

mode mode selects the horizontal alignment mode. If width = 0 and height = 0, mode
can attain one of the values left, right, or center, and the text will be formatted according
to the chosen alignment with respect to the point (x, y), with y denoting the position of
the baseline. In this mode, this function does not check whether the submitted parame-
ters result in some text being clipped at the page edges, nor does it apply any line-wrap-
ping. It returns the value 0 in this case.

If width or height is different from 0, mode can attain one of the values left, right,
center, justify, or fulljustify. The supplied text will be formatted into a text box defined by
the lower left corner (x, y) (but see the description of top-down coordinates in Section
3.2.1, »Coordinate Systems«, page 47) and the supplied width and height. If the text
doesn’t fit into a line, a simple line-breaking algorithm is used to break the text into the
next available line, using existing space characters for possible line-breaks. While the
left, right, and center modes align the text on the respective line, justify aligns the text on
both left and right margins. According to common practice the very last line in the box
will only be left-aligned in justify mode, while in fulljustify mode all lines (including the
last one if it contains at least one space character) will be left- and right-aligned. full-
justify is useful if the text is to be continued in another column.

feature If the feature parameter is blind, all calculations are performed (with the excep-
tion of the internal textx and texty coordinates, which are not updated), but no text out-
put is actually generated. This can be used for size calculations and possibly trying dif-
ferent font sizes for fitting some amount of text into a given box by varying the font
size. Otherwise feature must be empty.

Returns The number of characters which could not be processed since the text didn’t completely
fit into the column. If the text did actually fit, it returns 0. Since no formatting is per-
formed if width = 0 and height = 0, the function always returns 0 in this case.

Details The current font must have been set before calling this function. The current values of
font, font size, horizontal spacing, and leading are used for the text, but the word spac-
ing is ignored. The current text position is moved to the end of the generated text.

Calling this function is only alllowed if the current text format is auto or bytes.

underline boolean Underline mode (see Table 7.9). Default: the current value of the global underline
parameter.

wordspacing float The word spacing (see Table 7.9). Default: the current value of the global
wordspacing parameter.

Table 7.10 Options for PDF_fit_textline()

key type explanation

7.3 Text Functions 153

Scope page, pattern, template, glyph; this function cannot be used with CJK fonts or ebcdic en-
coding.

Params See Table 7.9.

See also Restrictions of this functions are listed in Section 4.6, »Text Metrics, Text Variations,
and Box Formatting«, page 88.

float PDF_stringwidth(PDF *p, const char *text, int font, float fontsize)
float PDF_stringwidth2(PDF *p, const char *text, int len, int font, float fontsize)

Return the width of text in an arbitrary font.

text The text for which the width will be queried.

len (Only for PDF_stringwidth2().) Length of text (in bytes) for strings which may con-
tain null characters. If len = 0 a null-terminated must be provided.

font A font handle returned by PDF_load_font(). The corresponding font must not be a
CJK font with a non-Unicode CMap. If font refers to such a font, this function returns 0
regardless of the text and fontsize parameters.

fontsize Size of the font, measured in units of the user coordinate system (see PDF_
setfont()).

Details This function returns the width of text in an arbitrary font which has been selected with
PDF_load_font(), and the given fontsize. The width calculation takes the current values of
the following text parameters into account: horizontal scaling, kerning, character spac-
ing, and word spacing. The returned width value may be negative (e.g, when negative
horizontal scaling has been set).

Scope page, pattern, template, path, glyph, document

Params See Table 7.9.

Bindings C and C++: For PDF_stringwidth() text must not contain null characters, since text is as-
sumed to be null-terminated; use PDF_stringwidth2() for strings which may contain null
characters.

Other bindings: PDF_stringwidth2() is not available since arbitrary string contents can be
supplied with PDF_stringwidth().

154 Chapter 7: PDFlib and PDI API Reference

7.4 Graphics Functions
7.4.1 Graphics State Functions

All graphics state parameters are restored to their default values at the beginning of a
page. The default values are documented in the respective function descriptions. Func-
tions related to the text state are listed in Section 7.3, »Text Functions«, page 142.

Note None of the graphics state functions must be used in path scope (see Section 3.2, »Page Descrip-
tions«, page 47).

void PDF_setdash(PDF *p, float b, float w)

Set the current dash pattern.

b, w The number of alternating black and white units. b and w must be non-negative
numbers.

Details In order to produce a solid line, set b = w = 0. The dash parameter is set to solid at the be-
ginning of each page.

Scope page, pattern, template, glyph

void PDF_setdashpattern(PDF *p, const char *optlist)

Set a dash pattern defined by an option list.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) according to Table 7.11.
An empty optlist will generate a solid line.

Details The dash parameter is set to a solid line at the beginning of each page.

Scope page, pattern, template, glyph

void PDF_setpolydash(PDF *p, float *darray, int length)

Deprecated, use PDF_setdashpattern() instead.

void PDF_setflat(PDF *p, float flatness)

Set the flatness parameter.

flatness A positive number which describes the maximum distance (in device pixels)
between the path and an approximation constructed from straight line segments.

Table 7.11 Options for PDF_setdashpattern().

option type description
dasharray float list An list of 2-8 alternating values for the lengths of dashes and gaps for stroked

paths (measured in the user coordinate system) . The array values must be non-
negative, and not all zero. The array values will be cyclically reused until the
complete path is stroked.

dashphase float Distance into the dash pattern at which to start the dash. Default: 0

7.4 Graphics Functions 155

Details The flatness parameter is set to the default value of 1 at the beginning of each page.

Scope page, pattern, template, glyph

void PDF_setlinejoin(PDF *p, int linejoin)

Set the linejoin parameter.

linejoin Specifies the shape at the corners of paths that are stroked, see Table 7.12.

Details The linejoin parameter is set to the default value of 0 at the beginning of each page.

Scope page, pattern, template, glyph

void PDF_setlinecap(PDF *p, int linecap)

Set the linecap parameter.

linecap Controls the shape at the end of a path with respect to stroking, see Table 7.13.

Details The linecap parameter is set to the default value of 0 at the beginning of each page.

Scope page, pattern, template, glyph

Table 7.12 Values of the linejoin parameter

value description (from the PDF reference) examples
0 Miter joins: the outer edges of the strokes for the two segments are

continued until they meet. If the extension projects too far, as determined
by the miter limit, a bevel join is used instead.

1 Round joins: a circular arc with a diameter equal to the line width is drawn
around the point where the segments meet and filled in, producing a
rounded corner.

2 Bevel joins: the two path segments are drawn with butt end caps (see the
discussion of linecap parameter), and the resulting notch beyond the ends
of the segments is filled in with a triangle.

Table 7.13 Values of the linecap parameter

value description (from the PDF reference) examples
0 Butt end caps: the stroke is squared off at the endpoint of the path.

1 Round end caps: a semicircular arc with a diameter equal to the line width
is drawn around the endpoint and filled in.

2 Projecting square end caps: the stroke extends beyond the end of the line
by a distance which is half the line width and is squared off.

156 Chapter 7: PDFlib and PDI API Reference

void PDF_setmiterlimit(PDF *p, float miter)

Set the miter limit.

miter A value greater than or equal to 1 which controls
the spike produced by miter joins.

Details If the linejoin parameter is set to 0 (miter join), two line
segments joining at a small angle will result in a sharp
spike. This spike will be replaced by a straight end (i.e., the
miter join will be changed to a bevel join) when the ratio of
the miter length and the line width exceeds the miter limit. The miter limit is set to the
default value of 10 at the beginning of each page. This corresponds to an angle of rough-
ly 11.5 degrees.

Scope page, pattern, template, glyph

void PDF_setlinewidth(PDF *p, float width)

Set the current line width.

width The line width in units of the current user coordinate system.

Details The width parameter is set to the default value of 1 at the beginning of each page.

Scope page, pattern, template, glyph

void PDF_initgraphics(PDF *p)

Reset all color and graphics state parameters to their defaults.

Details The color, linewidth, linecap, linejoin, miterlimit, dash parameter, and the current
transformation matrix (but not the text state parameters) are reset to their respective
defaults. The current clipping path is not affected.

This function may be useful in situations where the program flow doesn’t allow for
easy use of PDF_save()/PDF_restore().

Scope page, pattern, template, glyph

7.4.2 Saving and Restoring Graphics States

void PDF_save(PDF *p)

Save the current graphics state.

Details The graphics state contains parameters that control all types of graphics objects. Saving
the graphics state is not required by PDF; it is only necessary if the application wishes to
return to some specific graphics state later (e.g., a custom coordinate system) without
setting all relevant parameters explicitly again. The following items are subject to save/
restore:
> graphics parameters: clipping path, coordinate system, current point, flatness, line

cap style, dash pattern, line join style, line width, miter limit;

Miter
length

Line width

7.4 Graphics Functions 157

> color parameters: fill and stroke colors;
> text position and other text-related parameters, see list below;
> some PDFlib parameters, see list below.

Pairs of PDF_save() and PDF_restore() may be nested. Although the PDF specification
doesn’t limit the nesting level of save/restore pairs, applications must keep the nesting
level below 10 in order to avoid printing problems caused by restrictions in the Post-
Script output produced by PDF viewers, and to allow for additional save levels required
by PDFlib internally.

Scope page, pattern, template, glyph; must always be paired with a matching PDF_restore() call.
PDF_save() and PDF_restore() calls must be balanced on each page, pattern, and
template.

Params The following parameters are subject to save/restore: charspacing, wordspacing,
horizscaling, leading, font, fontsize, textrendering, textrise;

The following parameters are not subject to save/restore: fillrule, underline, overline,
strikeout.

void PDF_restore(PDF *p)

Restore the most recently saved graphics state.

Details The corresponding graphics state must have been saved on the same page, pattern, or
template.

Scope page, pattern, template, glyph; must always be paired with a matching PDF_save() call.
PDF_save() and PDF_restore() calls must be balanced on each page, pattern, and
template.

7.4.3 Coordinate System Transformation Functions
All transformation functions (PDF_translate(), PDF_scale(), PDF_rotate(), PDF_skew(),
PDF_concat(), PDF_setmatrix(), and PDF_initgraphics()) change the coordinate system
used for drawing subsequent objects. They do not affect existing objects on the page at
all.

void PDF_translate(PDF *p, float tx, float ty)

Translate the origin of the coordinate system.

tx, ty The new origin of the coordinate system is the point (tx, ty), measured in the old
coordinate system.

Scope page, pattern, template, glyph

void PDF_scale(PDF *p, float sx, float sy)

Scale the coordinate system.

sx, sy Scaling factors in x and y direction.

158 Chapter 7: PDFlib and PDI API Reference

Details This function scales the coordinate system by sx and sy. It may also be used for achiev-
ing a reflection (mirroring) by using a negative scaling factor. One unit in the x direction
in the new coordinate system equals sx units in the x direction in the old coordinate sys-
tem; analogous for y coordinates.

Scope page, pattern, template, glyph

Bindings COM: this function is also available under the name pscale to work around bug in VB.

void PDF_rotate(PDF *p, float phi)

Rotate the user coordinate system.

phi The rotation angle in degrees.

Details Angles are measured counterclockwise from the positive x axis of the current coordi-
nate system. The new coordinate axes result from rotating the old coordinate axes by
phi degrees.

Scope page, pattern, template, glyph

void PDF_skew(PDF *p, float alpha, float beta)

Skew the coordinate system.

alpha, beta Skewing angles in x and y direction in degrees.

Details Skewing (or shearing) distorts the coordinate system by the given angles in x and y di-
rection. alpha is measured counterclockwise from the positive x axis of the current coor-
dinate system, beta is measured clockwise from the positive y axis. Both angles must be
in the range -360˚ < alpha, beta < 360˚, and must be different from -270˚, -90˚, 90˚, and
270˚.

Scope page, pattern, template, glyph

void PDF_concat(PDF *p, float a, float b, float c, float d, float e, float f)

Concatenate a matrix to the current transformation matrix.

a, b, c, d, e, f Elements of a transformation matrix. The six floating point values make
up a matrix in the same way as in PostScript and PDF (see references). In order to avoid
degenerate transformations, a*d must not be equal to b*c.

Details This function concatenates a matrix to the current transformation matrix (CTM) for
text and graphics. It allows for the most general form of transformations. Unless you
are familiar with the use of transformation matrices, the use of PDF_translate(), PDF_
scale(), PDF_rotate(), and PDF_skew() is suggested instead of this function. The CTM is re-
set to the identity matrix [1, 0, 0, 1, 0, 0] at the beginning of each page.

Scope page, pattern, template, glyph

7.4 Graphics Functions 159

void PDF_setmatrix(PDF *p, float a, float b, float c, float d, float e, float f)

Explicitly set the current transformation matrix.

a, b, c, d, e, f See PDF_concat().

Details This function is similar to PDF_concat(). However, it disposes of the current transforma-
tion matrix, and completely replaces it with a new matrix.

Scope page, pattern, template, glyph

7.4.4 Explicit Graphics States

int PDF_create_gstate(PDF *p, const char *optlist)

Create a graphics state object definition.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) containing options for
explicit graphics states according to Table 7.14.

Returns A gstate handle that can be used in subsequent calls to PDF_set_gstate() during the en-
closing document scope.

Details The option list may contain any number of graphics state parameters. Not all parame-
ters are allowed for all PDF versions. The table lists the minimum required PDF version.

Scope document, page, pattern, template, glyph

Table 7.14 Options for PDF_create_gstate()

key type explanation and possible values PDF
alphaisshape boolean sources of alpha are treated as shape (true) or opacity (false).

Default: false
1.4

blendmode keyword list Name of the blend mode. Multiple blend modes can be specified.
Possible values: None, Normal, Multiply, Screen, Overlay, Darken,
Lighten, ColorDodge, ColorBurn, HardLight, SoftLight, Difference,
Exclusion, Hue, Saturation, Color, Luminosity. Default: None

1.4

flatness float maximum distance between a path and its approximation (see
PDF_setflat()), must be > 0.

1.3

linecap integer shape at the end of a path(see PDF_setlinecap()); must be 0, 1, or 2. 1.3
linejoin integer shape at the corners of paths (see PDF_setlinejoin()); must be 0, 1,

or 2
1.3

linewidth float line width (see PDF_setlinewidth()); must be > 0 1.3
miterlimit float controls the spike produced by miter joins, which must be >= 1 (see

PDF_setmiterlimit())
1.3

opacityfill float constant alpha for fill operations; must be >= 0 and <= 1. 1.4
opacitystroke float constant alpha for stroke operations; must be >=0 and <=1 1.4
overprintfill boolean overprint for operations other than stroke. Default: false 1.3
overprintmode integer overprint mode. 0 (default) means that each color component

replaces previously placed marks; 1 means that a color component
of 0 leaves the corresponding component unchanged.

1.3

overprintstroke boolean overprint for stroke operations. Default: false 1.3

160 Chapter 7: PDFlib and PDI API Reference

void PDF_set_gstate(PDF *p, int gstate)

Activate a graphics state object.

gstate A handle for a graphics state object retrieved with PDF_create_gstate().

Details All options contained in the graphics state object will be set. Graphics state options ac-
cumulate when this function is called multiply. Options which are not explicitly set in
the graphics state object will keep their current values. All graphics state options will be
reset to their default values at the beginning of a page.

Scope page, pattern, template, glyph

7.4.5 Path Construction
Table 7.15 lists relevant parameters and values for this section.

Note Make sure to call one of the functions in Section 7.4.6, »Path Painting and Clipping«, page 163
after using the functions in this section, or the constructed path will have no effect, and subse-
quent operations may raise a PDFlib exception.

void PDF_moveto(PDF *p, float x, float y)

Set the current point.

x, y The coordinates of the new current point.

Details The current point is set to the default value of undefined at the beginning of each page.
The current points for graphics and the current text position are maintained separately.

Scope page, pattern, template, path, glyph; this function starts path scope.

Params currentx, currenty

renderingintent keyword color rendering intent used for gamut compression; possible
keywords: Auto, AbsoluteColorimetric, RelativeColorimetric,
Saturation, Perceptual

1.3

smoothness float maximum error of a linear interpolation for a shading; must be >=
0 and <= 1

1.3

strokeadjust boolean whether or not to apply automatic stroke adjustment. Default:
false

1.3

textknockout boolean with respect to compositing, glyphs in a text object will be treated
as separate objects (false) or as a single object (true). Default: true

1.4

Table 7.15 Parameters and values for path segment functions (see Section 7.2.3, »Parameter Handling«, page 138)

function key explanation
get_value currentx

currenty
The x or y coordinate (in units of the current coordinate system), respectively, of
the current point. Scope: page, pattern, template, path

Table 7.14 Options for PDF_create_gstate()

key type explanation and possible values PDF

7.4 Graphics Functions 161

void PDF_lineto(PDF *p, float x, float y)

Draw a line from the current point to another point.

x, y The coordinates of the second endpoint of the line.

Details This function adds a straight line from the current point to (x, y) to the current path. The
current point must be set before using this function. The point (x, y) becomes the new
current point.

The line will be centered around the »ideal« line, i.e. half of the linewidth (as deter-
mined by the value of the linewidth parameter) will be painted on each side of the line
connecting both endpoints. The behavior at the endpoints is determined by the value of
the linecap parameter.

Scope path

Params currentx, currenty

void PDF_curveto(PDF *p, float x1, float y1, float x2, float y2, float x3, float y3)

Draw a Bézier curve from the current point, using three more control points.

x1, y1, x2, y2, x3, y3 The coordinates of three control points.

Details A Bézier curve is added to the current path from the current point to (x3, y3), using (x1, y1)
and (x2, y2) as control points. The current point must be set before using this function.
The endpoint of the curve becomes the new current point.

Scope path

Params currentx, currenty

void PDF_circle(PDF *p, float x, float y, float r)

Draw a circle.

x, y The coordinates of the center of the circle.

r The radius of the circle.

Details This function adds a circle to the current path as a complete subpath. The point (x + r, y)
becomes the new current point. The resulting shape will be circular in user coordinates.
If the coordinate system has been scaled differently in x and y directions, the resulting
curve will be elliptical.

Scope page, pattern, template, path, glyph; this function starts path scope.

Params currentx, currenty

Bindings COM: this function is also available under the name pcircle to work around bug in VB.

void PDF_arc(PDF *p, float x, float y, float r, float alpha, float beta)

Draw a counterclockwise circular arc segment.

x, y The coordinates of the center of the circular arc segment.

162 Chapter 7: PDFlib and PDI API Reference

r The radius of the circular arc segment. r must be nonnegative.

alpha, beta The start and end angles of the circular arc segment in degrees.

Details This function adds a counterclockwise circular arc segment to the current path, extend-
ing from alpha to beta degrees. For both PDF_arc() and PDF_arcn(), angles are measured
counterclockwise from the positive x axis of the current coordinate system. If there is a
current point an additional straight line is drawn from the current point to the starting
point of the arc. The endpoint of the arc becomes the new current point.

The arc segment will be circular in user coordinates. If the coordinate system has
been scaled differently in x and y directions the resulting curve will be elliptical.

Scope page, pattern, template, path, glyph; this function starts path scope.

Params currentx, currenty

void PDF_arcn(PDF *p, float x, float y, float r, float alpha, float beta)

Like PDF_arc(), but draws a clockwise circular arc segment.

Details Except for the drawing direction, this function behave exactly like PDF_arc(). In particu-
lar, the angles are still measured counterclockwise from the positive x axis.

void PDF_rect(PDF *p, float x, float y, float width, float height)

Draw a rectangle.

x, y The coordinates of the lower left corner of the rectangle.

width, height The size of the rectangle.

Details This function adds a rectangle to the current path as a complete subpath. Setting the
current point is not required before using this function. The point (x, y) becomes the
new current point. The lines will be centered around the »ideal« line, i.e. half of the line-
width (as determined by the value of the linewidth parameter) will be painted on each
side of the line connecting the respective endpoints.

Scope page, pattern, template, path, glyph; this function starts path scope.

Params currentx, currenty

void PDF_closepath(PDF *p)

Close the current path.

Details This function closes the current subpath, i.e., adds a line from the current point to the
starting point of the subpath.

Scope path

Params currentx, currenty

7.4 Graphics Functions 163

7.4.6 Path Painting and Clipping
Table 7.16 lists relevant parameters and values for this section.

Note Most functions in this section clear the path, and leave the current point undefined. Subse-
quent drawing operations must explicitly set the current point (e.g., using PDF_moveto()) after
one of these functions has been called.

void PDF_stroke(PDF *p)

Stroke the path and clear it.

Details This function strokes (draws) the current path with the current line width and the cur-
rent stroke color.

Scope path; this function terminates path scope.

void PDF_closepath_stroke(PDF *p)

Close the path, and stroke it.

Details This function closes the current subpath (adds a straight line segment from the current
point to the starting point of the path), and strokes the complete current path with the
current line width and the current stroke color.

Scope path; this function terminates path scope.

void PDF_fill(PDF *p)

Fill the interior of the path with the current fill color.

Details This function fills the interior of the current path with the current fill color. The interior
of the path is determined by one of two algorithms (see the fillrule parameter). Open
paths are implicitly closed before being filled.

Scope path; this function terminates path scope.

Params fillrule

Table 7.16 Parameters and values for path painting and clipping functions (see Section 7.2.3, »Parameter
Handling«, page 138)

function key explanation
set_parameter fillrule Set the current fill rule to winding or evenodd. The fill rule is used by PDF viewers

to determine the interior of shapes for the purpose of filling or clipping. Since both
algorithms yield the same result for simple shapes, most applications won’t have
to change the fill rule. The fill rule is reset to the default of winding at the
beginning of each page. Scope: page, pattern, template.

164 Chapter 7: PDFlib and PDI API Reference

void PDF_fill_stroke(PDF *p)

Fill and stroke the path with the current fill and stroke color.

Details This function fills and strokes the current path with the current fill and stroke color, re-
spectively.

Scope path; this function terminates path scope.

Params fillrule

void PDF_closepath_fill_stroke(PDF *p)

Close the path, fill, and stroke it.

Details This function closes the current subpath (adds a straight line segment from the current
point to the starting point of the path), and fills and strokes the complete current path.

Scope path; this function terminates path scope.

Params fillrule

void PDF_clip(PDF *p)

Use the current path as clipping path, and terminate the path.

Details This function uses the intersection of the current path and the current clipping path as
the clipping path for subsequent operations. The clipping path is set to the default val-
ue of the page size at the beginning of each page. The clipping path is subject to PDF_
save()/PDF_restore(). It can only be enlarged by means of PDF_save()/PDF_restore().

Scope path; this function terminates path scope.

void PDF_endpath(PDF *p)

End the current path without filling or stroking it.

Details This function doesn’t have any visible effect on the page. It generates an invisible path
on the page.

Scope path; this function terminates path scope.

7.5 Color Functions 165

7.5 Color Functions
7.5.1 Setting Color and Color Space

void PDF_setcolor(PDF *p,
const char *fstype, const char *colorspace, float c1, float c2, float c3, float c4)

Set the current color space and color.

fstype One of fill, stroke, or fillstroke to specify that the color is set for filling, stroking,
or both. The deprecated value both is equivalent to fillstroke.

colorspace One of gray, rgb, cmyk, spot, pattern, iccbasedgray, iccbasedrgb, iccbasedcmyk,
or lab to specify the color space.

c1, c2, c3, c4 Color components for the chosen color space:
> If colorspace is gray, c1 specifies a gray value;
> If colorspace is rgb, c1, c2, c3 specify red, green, and blue values;
> If colorspace is cmyk, c1, c2, c3, c4 specify cyan, magenta, yellow, and black values;
> If colorspace is spot, c1 specifies a spot color handle returned by PDF_makespotcolor(),

and c2 specifies a tint value between 0 and 1;
> If colorspace is pattern, c1 specifies a pattern handle returned by PDF_begin_pattern()

or PDF_shading_pattern().
> If colorspace is iccbasedgray, c1 specifies a gray value;
> If colorspace is iccbasedrgb, c1, c2, c3 specify red, green, and blue values;
> If colorspace is iccbasedcmyk, c1, c2, c3, c4 specify cyan, magenta, yellow, and black val-

ues;
> If colorspace is lab, c1, c2, and c3 specify color values in the CIE L*a*b* color space. c1

specifies the L* (luminance) in the range 0 to 100, and c2, c3 specify the a*, b* (chromi-
nance) values in the range -127 to 128.

Details All color values for the gray, rgb, and cmyk color spaces and the tint value for the spot col-
or space must be numbers in the inclusive range 0–1. Unused parameters should be set
to 0.

Grayscale, RGB values and spot color tints are interpreted according to additive color
mixture, i.e., 0 means no color and 1 means full intensity. Therefore, a gray value of 0
and RGB values with (r, g, b) = (0, 0, 0) mean black; a gray value of 1 and RGB values with
(r, g, b) = (1, 1, 1) mean white. CMYK values, however, are interpreted according to subtrac-
tive color mixture, i.e., (c, m, y, k) = (0, 0, 0, 0) means white and (c, m, y, k) = (0, 0, 0, 1) means
black. Color values in the range 0–255 must be scaled to the range 0–1 by dividing by 255.

The fill and stroke color values for the gray, rgb, and cmyk color spaces are set to a de-
fault value of black at the beginning of each page. There are no defaults for spot and pat-
tern colors.

If the iccbasedgray/rgb/cmyk color spaces are used, the corresponding ICC profile
must have been set before using the setcolor:iccprofilegray/rgb/cmyk parameters (see Ta-
ble 7.18).

The CIE L*a*b* color space is interpreted with a D50 illuminant.

Scope page, pattern (only if the pattern’s paint type is 1), template, glyph (only if the Type 3
font’s colorized option is true), document; a pattern color can not be used within its own

166 Chapter 7: PDFlib and PDI API Reference

definition. Setting the color in document scope may be useful for defining spot colors
with PDF_makespotcolor().

PDF/X PDF/X-1 and PDF/X-1a: colorspace = rgb, iccbasedgray/rgb/cmyk, and lab are not allowed.
PDF/X-3: colorspace = gray requires that the defaultgray parameter has been set before
unless the PDF/X output intent is a grayscale or CMYK device. colorspace = rgb requires
that the defaultrgb parameter has been set before unless the PDF/X output intent is an
RGB device. colorspace = cmyk requires that the defaultcmyk parameter has been set
before unless the PDF/X output intent is a CMYK device. Using iccbasedgray/rgb/cmyk
and lab color requires an ICC profile in the output intent (a standard name is not
sufficient in this case).

Params setcolor:iccprofilegray/rgb/cmyk

int PDF_makespotcolor(PDF *p, const char *spotname, int reserved)

Find a built-in spot color name, or make a named spot color from the current fill color.

spotname The name of a built-in spot color, or an arbitrary name for the spot color to
be defined. This name is restricted to a maximum length of 126 bytes. Only 8-bit charac-
ters are supported in the spot color name; Unicode or embedded null characters are not
supported.

reserved (C language binding only.) Reserved, must be 0.

Returns A color handle which can be used in subsequent calls to PDF_setcolor() throughout the
document. Spot color handles can be reused across all pages, but not across documents.
There is no limit for the number of spot colors in a document.

Details If spotname is known in the internal color tables, it will be used. Otherwise the (CMYK or
other) color values of the current fill color will be used to define the appearance of a new
spot color. These alternate values will only be used for screen preview and low-end
printing. High-end printing (or producing color separations) will use the supplied spot
color name instead of the CMYK values. Note that you will need some additional soft-
ware in order to produce color separations from PDF.

If spotname has already been used in a previous call to PDF_makespotcolor(), the re-
turn value will be the same as in the earlier call, and will not reflect the current color.

The special spot color name All can be used to apply color to all color separations,
which is useful for painting registration marks. A spot color name of None will produce
no visible output on any color separation.

Scope page, pattern, template, glyph (only if the Type 3 font’s colorized option is true), document;
the current fill color must not be a spot color or pattern.

PDF/X PANTONE• Colors are not currently supported in the PDF/X-1 and PDF/X-1a modes.

int PDF_load_iccprofile(PDF *p, const char *profilename, int reserved, const char *optlist)

Search a ICC profile, and prepare it for later use.

profilename The name of an ICCProfile resource, a disk-based or virtual file name, or a
standard output condition name for PDF/X. The latter is only allowed if the usage op-
tion is set to outputintent.

7.5 Color Functions 167

reserved (C language binding only.) Reserved, must be 0.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) describing aspects of
the profile handling according to Table 7.17.

Returns A profile handle which can be used in subsequent calls to PDF_load_image() or for set-
ting profile-related parameters. The return value must be checked for -1 (in PHP: 0)
which signals an error. In order to get more detailed information about the nature of a
profile-related problem (file not found, unsupported format, etc.) set the iccwarning pa-
rameter to true. The returned profile handle can not be reused across multiple PDF doc-
uments. Also, the returned handle can not be applied to an image if the usage option is
outputintent. There is no limit to the number of ICC profiles in a document.

Details If the usage option is iccbased the named profile will be searched according to the search
strategy discussed in Section 3.3.4, »Color Management and ICC Profiles«, page 57. If the
profile is found, it will be checked whether it is suitable (e.g., number of color compo-
nents). The sRGB profile is always available internally, and must not be configured.

If usage option is outputintent the named profile is first searched in an internal list of
standard output intents. If this search was unsuccessful, the name will be searched in
the list of user-configured output intents. If the supplied name was found to be a stan-
dard output intent according to the built-in or user-configured list, no ICC profile will
be searched, and the name supplied with the description option will be embedded in
the PDF output as the PDF/X output intent. If the name was not found to be a standard
output intent identifier, it is treated as a profile name and the corresponding ICC profile
will be embedded in the PDF as the PDF/X output intent.

Scope document; if the usage option is iccbased the following scopes are also allowed: page,
pattern, template, glyph.

Params See Table 7.18.

PDF/X The output intent for the generated document must be set either using this function, or
by copying an imported document’s output intent using PDF_process_pdi().

Table 7.17 Options for PDF_load_iccprofile()

key type explanation and possible values
usage keyword A keyword describing the intended use of the ICC profile:

iccbased: the ICC profile will be used to define an ICC-based color space, or
will be applied to an image.
outputintent: the ICC profile will be used to define a PDF/X output intent.
Default is iccbased.

description string This option is only used if usage = outputintent. It contains the human-
readable description of the ICC profile which will be used along with the
PDF/X output intent. Default: if profilename refers to a standard output
intent, the description will be taken from an internal list; otherwise there
will be no description.

embediccprofile boolean This option is only used if usage = outputintent. Force an embedded ICC
profile even if a standard output intent has been provided as profilename.

168 Chapter 7: PDFlib and PDI API Reference

7.5.2 Patterns and Shadings

int PDF_begin_pattern(PDF *p,
float width, float height, float xstep, float ystep, int painttype)

Start a pattern definition.

width, height The dimensions of the pattern’s bounding box in points.

xstep, ystep The offsets when repeatedly placing the pattern to stroke or fill some ob-
ject. Most applications will set these to the pattern width and height, respectively.

painttype If painttype is 1 the pattern must contain its own color specification which
will be applied when the pattern is used; if painttype is 2 the pattern must not contain
any color specification but instead the current fill or stroke color will be applied when
the pattern is used for filling or stroking.

Returns A pattern handle that can be used in subsequent calls to PDF_setcolor() during the en-
closing document scope.

Details Hypertext functions and functions for opening images must not be used during a pat-
tern definition, but all text, graphics, and color functions (with the exception of the pat-
tern which is in the process of being defined) can be used.

Scope document; this function starts pattern scope, and must always be paired with a matching
PDF_end_pattern() call.

Table 7.18 Parameters and values for ICC profiles

function key explanation
set_parameter ICCProfile

Standard-
OutputIntent

The corresponding resource file line as it would appear for the respective category
in a UPR file (see Section 3.1.6, »Resource Configuration and File Searching«, page
41). Multiple calls add new entries to the internal list. (See also prefix and
resourcefile in Table 7.2). Scope: any.

set_parameter iccwarning Enable or suppress warnings (nonfatal exceptions) related to ICC profiles. Possible
values are true and false, default value is false. Scope: any

get_value icccomponents Return the number of color components in the ICC profile referenced by the
handle provided in the modifier.

set_value defaultgray
defaultrgb
defaultcmyk

Set a default Gray, RGB, or CMYK color space for the page according to the
supplied profile handle.

set_value setcolor:icc-
profilegray

Set an ICC profile which specifies a Gray color space for use with PDF_setcolor().
Scope: document, page, pattern, template, glyph

set_value setcolor:icc-
profilergb

Set an ICC profile which specifies an RGB color space for use with PDF_setcolor().
Scope: document, page, pattern, template, glyph

set_value setcolor:icc-
profilecmyk

Set an ICC profile which specifies a CMYK color space for use with PDF_setcolor().
Scope: document, page, pattern, template, glyph

7.5 Color Functions 169

void PDF_end_pattern(PDF *p)

Finish a pattern definition.

Scope pattern; this function terminates pattern scope, and must always be paired with a
matching PDF_begin_pattern() call.

int PDF_shading_pattern(PDF *p, int shading, const char *optlist)

Define a shading pattern using a shading object.

shading A shading handle returned by PDF_shading().

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) describing aspects of
the shading pattern according to Table 7.19.

Returns A pattern handle that can be used in subsequent calls to PDF_setcolor() during the en-
closing document scope.

Details This function can be used to fill arbitrary objects with a shading. To do so, a shading
handle must be retrieved using PDF_shading(), then a pattern must be defined based on
this shading using PDF_shading_pattern(). Finally, the pattern handle can be supplied to
PDF_setcolor() to set the current color to the shading pattern.

Scope document, page, font

void PDF_shfill(PDF *p, int shading)

Fill an area with a shading, based on a shading object.

shading A shading handle returned by PDF_shading().

Details This function allows shadings to be used without involving PDF_shading_pattern() and
PDF_setcolor(). However, it works only for simple shapes where the geometry of the ob-
ject to be filled is the same as that of the shading itself. Since the current clip area will be
shaded (subject to the extend0 and extend1 options of the shading) this function will
generally be used in combination with PDF_clip().

Scope page, pattern (only if the pattern’s paint type is 1), template, glyph (only if the Type 3
font’s colorized option is true), document;

int PDF_shading(PDF *p, const char *shtype, float x0, float y0, float x1, float y1,
float c1, float c2, float c3, float c4, const char *optlist)

Define a color blend (smooth shading) from the current fill color to the supplied color.

shtype The type of the shading; must be axial for linear shadings or radial for circle-
like shadings.

Table 7.19 Options for PDF_shading_pattern()

key type explanation and possible values PDF
gstate integer A graphics state handle 1.3

170 Chapter 7: PDFlib and PDI API Reference

x0, y0, x1, y1 For axial shadings, (x0, y0) and (x1, y1) are the coordinates of the starting
and ending points of the shading. For radial shadings these points specify the centers of
the starting and ending circles.

c1, c2, c3, c4 Color values of the shading’s endpoint, interpreted in the current fill color
space in the same way as the color parameters in PDF_setcolor(). If the current fill color
space is a spot color space c1 will be ignored, and c2 contains the tint value.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) describing aspects of
the shading according to Table 7.20.

Returns A shading handle that can be used in subsequent calls to PDF_shading_pattern() and
PDF_shfill() during the enclosing document scope.

Details The current fill color will be used as the starting color; it must not be based on a pattern.

Scope document, page, font

Table 7.20 Options for PDF_shading()

key type explanation and possible values PDF
N float The exponent for the color transition function; must be > 0.

Default: 1
1.3

r0 float (Only for radial shadings, and required in this case) The radius of
the starting circle.

1.3

r1 float (Only for radial shadings, and required in this case) The radius of
the ending circle.

1.3

extend0 boolean Specifies whether to extend the shading beyond the starting point.
Default: false

1.3

extend1 boolean Specifies whether to extend the shading beyond the endpoint.
Default: false

1.3

antialias boolean Specifies whether to activate antialiasing for the shading. Default:
false

1.3

7.6 Image and Template Functions 171

7.6 Image and Template Functions
Table 7.21 lists relevant parameters and values for this section.

7.6.1 Images

int PDF_load_image(PDF *p,
const char *imagetype, const char *filename, int reserved, const char *optlist)

Open a (disk-based or virtual) image file with various options.

imagetype The string auto instructs PDFlib to automatically detect the image file type
(this is not possible for CCITT and raw images). Explicitly specifying the image format
with the strings bmp, ccitt, gif, jpeg, png, raw, or tiff offers slight performance advantages
(for details see Section 5.1.2, »Supported Image File Formats«, page 102). Type ccitt is dif-
ferent from a TIFF file which contains CCITT-compressed image data.

filename The name of the (disk-based or virtual) image file to be opened. Only 8-bit
characters are supported in the image file name; Unicode or embedded null characters
are not supported.

reserved (C language binding only.) Reserved, must be 0.

Table 7.21 Parameters and values for the image functions (see Section 7.2.3, »Parameter Handling«, page 138)

function key explanation
get_value imagewidth

imageheight
Get the width or height, respectively, of an image in pixels. The modifier is
the integer handle of the selected image. Scope: page, pattern, template,
document, path.

get_value resx
resy

Get the horizontal or vertical resolution of an image, respectively. The
modifier is the integer handle of the selected image. Scope: page, pattern,
template, document, path.

If the value is positive, the return value is the image resolution in pixels per
inch (dpi). If the return value is negative, resx and resy can be used to find
the aspect ratio of non-square pixels, but don’t have any absolute
meaning. If the return value is zero, the resolution of the image is
unknown.

set_parameter imagewarning This parameter can be used in order to obtain more detailed information
about why an image couldn’t be opened successfully with PDF_load_
image(). Scope: any.
true Raise an exception when the image function fails, and return -1

(in PHP: 0). The message supplied with the exception may be
useful for debugging.

false Do not raise an exception when the image function fails.
Instead, the function simply returns -1 (in PHP: 0) on error. This is
the default.

set_value image:iccprofile Handle for an ICC profile which will be applied to all respective images
unless the icchandle option is supplied.

get_value image:iccprofile Return a handle for the ICC profile embedded in the image referenced by
the image handle provided in the modifier.

set_value renderingintent The rendering intent for images. See Table 3.8 for a list of possible
keywords and their meaning. Default: AutoIntent.

172 Chapter 7: PDFlib and PDI API Reference

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying image-relat-
ed properties according to Table 7.22.

Returns An image handle which can be used in subsequent image-related calls. The return value
must be checked for -1 (in PHP: 0) which signals an error. In order to get more detailed
information about the nature of an image-related problem (wrong image file name, un-
supported format, bad image data, etc.), set the imagewarning parameter to true (see Ta-
ble 7.21). The returned image handle can not be reused across multiple PDF documents.

Details This function opens and analyzes a raster graphics file in one of the supported formats
as determined by the imagetype parameter. PDFlib will open the image file with the pro-
vided filename, process the contents, and close the file before returning from this call.
Although images can be placed multiply within a document (see PDF_fit_image()), the
actual image file will not be kept open after this call.

If imagetype = raw or ccitt, the width, height, components, and bpc options must be sup-
plied since PDFlib cannot deduce those from the image data. The user is responsible for
supplying option values which actually match the image. Otherwise corrupt PDF out-
put may be generated, and Acrobat may respond with the message Insufficient data for
an Image.

If imagetype = raw, the length of the supplied image data must be equal to [width x
components x bpc / 8] x height bytes, with the bracketed term adjusted upwards to the
next integer. The image samples are expected in the standard PostScript/PDF ordering,
i.e., top to bottom and left to right (assuming no coordinate transformations have been
applied). The polarity of the pixel values is as discussed in Section 3.2.3, »Paths«, page 50.
Even if bpc is not 8, each pixel row begins on a byte boundary, and color values must be
packed from left to right within a byte. Image samples are always interleaved, i.e., all
color values for the first pixel are supplied first, followed by all color values for the sec-
ond pixel, and so on.

Scope If the inline option is not provided, the scope is document, page, font, and this function
must always be paired with a matching PDF_close_image() call. Loading images in
document or font scope instead of page scope offers slight output size advantages.
If the inline option is provided, the scope is page, pattern, template, glyph, and PDF_close_
image() must not be called.

PDF/X All PDF/X conformance levels: GIF and LZW-compressed TIFF images are not allowed.
PDF/X-1 and PDF/X-1a: RGB images are not allowed.
PDF/X-3: Grayscale images require that the defaultgray parameter must have been set
before unless the PDF/X output intent is a grayscale or CMYK device. RGB images
require that the defaultrgb parameter must have been set before unless the PDF/X
output intent is an RGB device. CMYK images require that the defaultcmyk parameter
must have been set before unless the PDF/X output intent is a CMYK device.

Params imagewidth, imageheight, resx, resy, imagewarning

void PDF_close_image(PDF *p, int image)

Close an image.

image A valid image handle retrieved with PDF_load_image().

7.6 Image and Template Functions 173

Table 7.22 Options for PDF_load_image()

key type explanation
bitreverse boolean (Only for imagetype = ccitt) If true, do a bitwise reversal of all bytes in the

compressed data. Default: false.
bpc integer (Only for imagetype = raw, and required in this case) The number of bits per

component; must be 1, 2, 4, or 8.
colorize spot color

handle
Colorize the image with a spot color handle, which must have been retrieved with
PDF_makespotcolor(). The image must be a grayscale image with 1, 2, 4, or 8 bits
color depth.

components integer (Only for imagetype=raw, and required in this case) The number of image
components (channels); must be 1, 3, or 4.

height integer (Only for imagetype = raw and ccitt, and required in this case) The height of the
image in pixels.

honor-
iccprofile

boolean (Only for imagetype = jpeg, png, and tiff) Read an embedded ICC profile (if any)
and apply it to the image. Default: the value of the global honoriccprofile
parameter.

iccprofile icc handle (Only for imagetype = jpeg, png, and tiff) Handle of the ICC profile which will be
applied to the image. Default: the value of the global image:iccprofile parameter.

ignoremask boolean Ignore any transparency information which may be present in the image. Default:
false.

image-
warning

boolean Enable exceptions when the image cannot be opened. Default: the value of the
global imagewarning parameter.

inline boolean (Only for imagetype = ccitt, jpeg, and raw) If true, the image will be written
directly into the content stream of the page, pattern, template, or glyph
description (see Section 5.1.1, »Basic Image Handling«, page 101).

interpolate boolean Enable image interpolation in Acrobat to improve the appearance on screen and
paper. This is especially useful for bitmap images to be used as glyph descriptions
in Type 3 fonts. Default: false.

invert boolean Invert the image (swap light and dark colors). This can be used as a workaround
for certain images which are interpreted differently by different applications.
Default: false.

K integer (Only for imagetype = ccitt) CCITT compression parameter for encoding scheme
selection. -1 indicates G4 compression; 0 indicates one-dimensional G3
compression (G3-1D); 1 indicates mixed one- and two-dimensional compression
(G3, 2-D) as supported by PDF. Default: 0.

mask boolean The image is going to be used as a mask (see Section 5.1.3, »Image Masks and
Transparency«, page 104). This is required for 1-bit masks, but optional for masks
with more than 1 bit per pixel. However, masks with more than 1 bit require
PDF 1.4. Default is false. There are two uses for masks:
Masking another image: the returned image handle may be used in subsequent
calls for opening another image and can be supplied for the »masked« option.
Placing a colorized transparent image: treat the 0-bit pixels in the image as
transparent, and colorize the 1-bit pixels with the current fill color.

masked image
handle

An image handle for an image which will be applied as a mask to the current
image. The integer is an image handle which has been returned by a previous call
to PDF_load_image() (with the »mask« option if it is a 1-bit mask), and has not
yet been closed. In PDF 1.3 compatibility mode the image handle must refer to a 1-
bit image since soft masks are only supported in PDF 1.4.

page integer (Only for imagetype = gif and tiff) Extract the image with the given number from
a multi-page image file. The first image has the number 1. Default: 1.

174 Chapter 7: PDFlib and PDI API Reference

Details This function only affects PDFlib’s associated internal image structure. If the image has
been opened from file, the actual image file is not affected by this call since it has al-
ready been closed at the end of the corresponding PDF_load_image() call. An image han-
dle cannot be used any more after it has been closed with this function, since it breaks
PDFlib’s internal association with the image.

Scope document, page, font; must always be paired with a matching call to PDF_load_image()
unless the inline option has been used.

void PDF_fit_image(PDF *p, int im, float x, float y, const char *optlist)

Place an image or template at (x, y) with various options.

image A valid image or template handle retrieved with one of the PDF_load_image*()
or PDF_begin_template() functions.

x, y The coordinates of the reference point in the user coordinate system where the
image or template will be located, subject to various options.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying placement
details according to Table 7.23.

Details The image or template (collectively referred to as an object below) will be placed relative
to the reference point (x, y). By default, the lower left corner of the object will be placed
at the reference point. However, the orientate, boxsize, position, and fitmethod options
can modify this behavior. By default, an image will be scaled according to its resolution
value(s). This behavior can be modified with the dpi, scale, and fitmethod options.

Scope page, pattern, template, glyph (only if the Type 3 font’s colorized option is true, or if the
image is a mask); this function can be called an arbitrary number of times on arbitrary
pages, as long as the image handle has not been closed with PDF_close_image().

rendering-
intent

keyword The rendering intent for the image. See Table 3.8 for a list of possible keywords
and their meaning. Default: the value of the global renderingintent parameter.

reftype keyword (Deprecated; only for imagetype = ccitt, jpeg, and raw) One of direct (for image
data to be read from a file), fileref or url to specify image data via a reference to a
local file or an URL.

width integer (Only for imagetype = raw and ccitt, and required in this case) The width of the
image in pixels.

Table 7.23 Options for PDF_fit_image() and PDF_fit_pdi_page()

key type explanation
adjustpage boolean Adjust the dimensions of the current page to the object such that the upper right

corner of the page coincides with the upper right corner of the object plus (x, y).
With the value 0 for the position option the following useful cases shall be noted:
x >= 0 and y >= 0: the object is surrounded by a white margin. This margin has
thickness y in horizontal direction and thickness x in vertical direction.
x < 0 and y < 0: horizontal and vertical strips will be cropped from the image.
This option is only effective in scope page, and must not be used when the
topdown parameter has been set to true. Default: false.

Table 7.22 Options for PDF_load_image()

key type explanation

7.6 Image and Template Functions 175

blind boolean If true, all positioning and scaling calculations will be done, but the object will not
be placed on the output page. This is useful for processing blocks without actually
using the page contents. Default: false.

boxsize float list Two values specifying the width and height of a box, relative to which the object
will be placed and possibly scaled. The lower left corner of the box coincides with
the reference point (x, y). Placing the image and fitting it into the box is controlled
by the position and fitmethod options. If width = 0, only the height is considered,
and vice versa. Fitting the object into the box is not possible in these cases.
Default: {0 0}.

dpi float list One or two values specifying the desired image resolution in pixels per inch in
horizontal and vertical direction. If a single value is supplied it will be used for
both directions. With the value o the image’s internal resolution will be used if
available, or 72 dpi otherwise. As an alternative to the value 0, the keyword
internal can be supplied. This option will be ignored for templates and PDF pages,
or if the fitmethod option has been supplied with one of the keywords meet, slice,
or entire. Default: internal.

fitmethod keyword Specifies the method used to fit the object into the specified box. This option will
be ignored if no box has been specified. Default: nofit.
nofit Position the object only, without any scaling or clipping.
clip Position the object, and clip it at the edges of the box.
meet Position the object according to the position option, and scale it such

that it entirely fits into the box while preserving its aspect ratio.
Generally at least two edges of the object will meet the corresponding
edges of the box. The dpi and scale options are ignored.

slice Position the object according to the position option, and scale it such
that it entirely covers the box, while preserving the aspect ratio and
making sure that at least one dimension of the object is fully contained
in the box. Generally parts of the object’s other dimension will extend
beyond the box, and will therefore be clipped. The dpi and scale options
are ignored.

entire Position the object according to the position option, and scale it such
that it entirely covers the box. Generally this method will distort the
object. The dpi and scale options are ignored.

orientate keyword Specifies the desired orientation of the object when it is placed. Default: north.
north upright
east pointing to the right
south upside down
west pointing to the left

position float list One or two values specifying the position of the reference point (x, y) within the
object with {0 0} being the lower left corner of the object, and {100 100} the upper
right corner. If the boxsize option has been specified, the position option also
specifies the positioning of the box. The values are expressed as percentages of the
object’s width and height. If both percentages are equal it is sufficient to specify a
single float value. Some examples: 0 or {0 0} means lower left corner; {50 100}
means middle of the top edge; 50 or {50 50} means the center of the object.
Default: 0.

rotate float Rotate the coordinate system, using the reference point as center and the speci-
fied value as rotation angle in degrees. This results in the box and the object being
rotated. The rotation will be reset when the object has been placed. Default: 0.

scale float list Scale the object in horizontal and vertical direction by the specified scaling factors
(not percentages). If both factors are equal it is sufficient to specify a single float
value. This option will be ignored if the fitmethod option has been supplied with
one of the keywords meet, slice, or entire. Default: 1

Table 7.23 Options for PDF_fit_image() and PDF_fit_pdi_page()

key type explanation

176 Chapter 7: PDFlib and PDI API Reference

7.6.2 Templates

int PDF_begin_template(PDF *p, float width, float height)

Start a template definition.

width, height The dimensions of the template’s bounding box in points.

Returns A template handle which can be used in subsequent image-related calls, especially PDF_
fit_image(). There is no error return.

Details Hypertext functions and functions for opening images must not be used during a
template definition, but all text, graphics, and color functions can be used.

Scope document; this function starts template scope, and must always be paired with a
matching PDF_end_template() call.

void PDF_end_template(PDF *p)

Finish a template definition.

Scope template; this function terminates template scope, and must always be paired with a
matching PDF_begin_template() call.

7.6.3 Deprecated Functions

int PDF_open_image_file(PDF *p,
const char *imagetype, const char *filename, const char *stringparam, int intparam)

Deprecated, use PDF_load_image() with the colorize, ignoremask, invert, mask, masked, and
page options instead.

int PDF_open_CCITT(PDF *p,
const char *filename, int width, int height, int BitReverse, int K, int BlackIs1)

Deprecated, use PDF_load_image() with type = ccitt and the options width, height,
bitreverse, K, and blackis1 instead.

int PDF_open_image(PDF *p, const char *imagetype, const char *source, const char *data,
long length, int width, int height, int components, int bpc, const char *params)

Deprecated, use virtual files and PDF_load_image() with type = jpeg, ccitt, or raw and the
options width, height, components, bpc, mask, invert, reftype, and inline instead.

void PDF_place_image(PDF *p, int image, float x, float y, float scale)

Deprecated, use PDF_fit_image() instead.

7.7 PDF Import (PDI) Functions 177

7.7 PDF Import (PDI) Functions
Note All functions described in this section require the additional PDF import library (PDI) which is

not part of the PDFlib source code distribution. Please visit our Web site for more information
on obtaining PDI.

7.7.1 Document and Page

int PDF_open_pdi(PDF *p, const char *filename , const char *optlist, int reserved)

Open a (disk-based or virtual) PDF document and prepare it for later use.

filename The name of the PDF file. Only 8-bit characters are supported in the PDF file
name; Unicode or embedded null characters are not supported.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying PDF open
options according to Table 7.24.

reserved Reserved, must be 0.

Returns A document descriptor which can be used for processing individual pages of the docu-
ment or for querying document properties. A return value of -1 (in PHP: 0) indicates that
the PDF document couldn’t be opened. An arbitrary number of PDF documents can be
opened simultaneously. The return value can be used until the end of the enclosing
document scope.

Details In order to get more detailed information about the nature of a PDF import-related
problem (wrong PDF file name, unsupported format, bad PDF data, etc.), set the
pdiwarning parameter to true.

Scope object, document, page; in object scope a PDI document handle can only be used to query
information from a PDF document.

Params See Table 7.27 and Table 7.28.

int PDF_open_pdi_callback(PDF *p, void *opaque, size_t filesize,
size_t (*readproc)(void *opaque, void *buffer, size_t size),
int (*seekproc)(void *opaque, long offset),
const char *optlist)

Open an existing PDF document from a custom data source and prepare it for later use.

opaque A pointer to some user data that might be associated with the input PDF docu-
ment. This pointer will be passed as the first parameter of the callback functions, and
can be used in any way. PDI will not use the opaque pointer in any other way.

Table 7.24 Options for PDF_open_pdi()

key type explanation
password string (Maximum string length: 32 characters) The master password required to

open a protected PDF document.
pdiwarning boolean Specifies whether or not this function will throw an exception in case of an

error. Default is the value of the pdiwarning parameter (see Table 7.28).

178 Chapter 7: PDFlib and PDI API Reference

filesize The size of the complete PDF document in bytes.

readproc A callback function which copies size bytes to the memory pointed to by
buffer. If the end of the document is reached it may copy less data than requested. The
function must return the number of bytes copied.

seekproc A callback function which sets the current read position in the document.
offset denotes the position from the beginning of the document (0 meaning the first
byte). If successful, this function must return 0, otherwise -1.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying PDF open
options according to Table 7.24.

Returns A document descriptor which can be used for processing individual pages of the docu-
ment or for querying document properties. A return value of -1 indicates that the PDF
document couldn’t be opened. An arbitrary number of PDF documents can be opened
simultaneously. The return value can be used until the end of the enclosing document
scope.

Details This is a specialized interface for applications which retrieve arbitrary chunks of PDF
data from some data source instead of providing the PDF document in a disk file or in
memory.

Scope object, document, page; in object scope a PDI document handle can only be used to query
information from a PDF document.

Params See Table 7.27 and Table 7.28.

Bindings Only available in the C binding.

void PDF_close_pdi(PDF *p, int doc)

Close all open PDI page handles, and close the input PDF document.

doc A valid PDF document handle retrieved with PDF_open_pdi*().

Details This function closes a PDF import document, and releases all resources related to the
document. All document pages which may be open are implicitly closed. The document
handle must not be used after this call. A PDF document should not be closed if more
pages are to be imported. Although you can open and close a PDF import document an
arbitrary number of times, doing so may result in unnecessary large PDF output files.

Scope object, document, page

Params See Table 7.27 and Table 7.28.

int PDF_open_pdi_page(PDF *p, int doc, int pagenumber, const char* optlist)

Prepare a page for later use with PDF_place_pdi_page().

doc A valid PDF document handle retrieved with PDF_open_pdi*().

pagenumber The number of the page to be opened. The first page has page number 1.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying page op-
tions according to Table 7.25.

7.7 PDF Import (PDI) Functions 179

Returns A page descriptor which can be used for placing pages with PDF_fit_pdi_page(). A return
value of -1 (in PHP: 0) indicates that the page couldn’t be opened. The return value can
be used until the end of the enclosing document scope.

Details In order to get more detailed information about a problem related to PDF import (un-
supported format, bad PDF data, etc.), set the pdiwarning parameter to true.

An arbitrary number of pages can be opened simultaneously. If the same page is
opened multiply, different handles will be returned, and each handle must be closed ex-
actly once. Opening the same page more than once is not recommended because the ac-
tual page data will be copied to the output document more than once.

Scope document, page

Params See Table 7.27 and Table 7.28.

void PDF_close_pdi_page(PDF *p, int page)

Close the page handle, and free all page-related resources.

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page().

Details This function closes the page associated with the page handle identified by page, and re-
leases all related resources. page must not be used after this call.

Scope document, page

Params See Table 7.27 and Table 7.28.

void PDF_fit_pdi_page(PDF *p, int page, float x, float y, const char *optlist)

Place an imported PDF page at (x, y) with various options.

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page(). The page handle must not have been closed.

x, y The coordinates of the reference point in the user coordinate system where the
page will be located, subject to various options.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying placement
details according to Table 7.23.

Details This function is similar to PDF_fit_image(), but operates on imported PDF pages instead.
Most scaling and placement options discussed in Table 7.23 are supported for PDF pages,
too.

Table 7.25 Options for PDF_open_pdi_page()

key type explanation
pdiusebox keyword Specifies which box dimensions to use for importing the page (see Section

5.2.2, »Using PDI Functions with PDFlib«, page 108). Default is the value of
the pdiusebox parameter (see Table 7.28).

pdiwarning boolean Specifies whether or not this function will throw an exception in case of an
error. Default is the value of the pdiwarning parameter (see Table 7.28).

180 Chapter 7: PDFlib and PDI API Reference

Scope page, pattern, template, glyph

Params See Table 7.27 and Table 7.28.

PDF/X The document from which the page is imported must conform to the same PDF/X
conformance level and must use the same output intent as the generated document.

void PDF_place_pdi_page(PDF *p, int page, float x, float y, float sx, float sy)

Deprecated, use PDF_fit_pdi_page() instead.

7.7.2 Other PDI Processing

int PDF_process_pdi(PDF *p, int doc, int page, const char* optlist)

Process certain elements of an imported PDF document.

doc A valid PDF document handle retrieved with PDF_open_pdi*().

page If optlist requires a page handle (see Table 7.26), page must be a valid PDF page
handle (not a page number!) retrieved with PDF_open_pdi_page(). The page handle must
not have been closed. If optlist does not require any page handle, page must be -1.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying processing
options according to Table 7.26.

Returns The value 1 if the function succeeded, or an error code of -1 (in PHP: 0) if the function call
failed.

Details The details of this function are determined by the options provided in optlist.

Scope document

Params See Table 7.28.

PDF/X The output intent for the generated document must be set either using this function
with the copyoutputintent option, or by calling PDF_load_profile().

Table 7.26 Options for PDF_process_pdi()

key type explanation
action1

1. Does not require a page handle.

keyword Specifies the kind of PDF processing:
copyoutputintent: copy the PDF/X output intent of the imported
document to the output document. The second and subsequent attempts
to copy an output intent will be ignored.

pdiwarning1 boolean Specifies whether or not this function will throw an exception in case of an
error. Default is the value of the pdiwarning parameter (see Table 7.28).

7.7 PDF Import (PDI) Functions 181

7.7.3 Parameter Handling

float PDF_get_pdi_value(PDF *p, const char *key, int doc, int page, int reserved)

Get some PDI document parameter with numerical type.

key Specifies the name of the parameter to be retrieved, see Table 7.27 and Table 7.28.

doc A valid PDF document handle retrieved with PDF_open_pdi().

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page(). For keys which are not page-related page must be -1 (in PHP: 0).

reserved Currently unused, must be 0.

Returns The numerical value retrieved from the document.

Scope any

const char * PDF_get_pdi_parameter(
PDF *p, const char *key, int doc, int page, int reserved, int *len)

Get some PDI document parameter with string type.

key Specifies the name of the parameter to be retrieved, see Table 7.27 and Table 7.28.

doc A valid PDF document handle retrieved with PDF_open_pdi().

page A valid PDF page handle (not a page number!) retrieved with PDF_open_pdi_
page(). For keys which are not page-related page must be -1 (in PHP: 0).

reserved Currently unused, must be 0.

len A C-style pointer to an integer which will receive the length of the returned string
in bytes (for Unicode strings: including the BOM, but excluding the terminating double-
null). This parameter is only required for C and C++, and not allowed in other langguage
bindings.

Returns The string parameter retrieved from the document. Unicode info strings (/Info/<key>)
will be returned with initial BOM and terminating double-null. Currently PDFlib does
not construct a proper Unicode string object from document info keys containing Uni-
code text. If no information is available an empty string will be returned.

Table 7.27 Page-related values for PDF import

function key explanation
get_pdi_value width

height
Get the width or height, respectively, of an imported page in
default units. Cropping and rotation will be taken into account.

get_pdi_value /Rotate page rotation in degrees (0, 90, 180, or 270)
get_pdi_value /CropBox,

/BleedBox,
/ArtBox,
/TrimBox

Query one of the box parameters of the page. The parameter
name must be followed by a slash ’/’ character and one of llx, lly,
urx, ury, for example: /CropBox/llx (see Section 3.2.2, »Page Sizes
and Coordinate Limits«, page 49 for details). Note that these will
not have the
/Rotate key applied, unlike the width and height values which
already reflect any rotation which may be applied to the page.

182 Chapter 7: PDFlib and PDI API Reference

Details This function gets some string parameter related to an imported PDF document, in
some cases further specified by page and index. Table 7.28 lists relevant parameter com-
binations.

Bindings C and C++: The len parameter must be supplied.

Other bindings: The len parameter must be omitted; instead, a string object of appropri-
ate length will be returned.

Scope any

Table 7.28 Document-related parameters and values for PDF import. The page parameter must be -1 (in PHP: 0).

function key explanation
get_parameter pdi Returns the string true if the PDI library is attached (and not

restricted to demo mode), and false otherwise. Scope: any, null1.

1. May be called with a PDF * argument of NULL or 0.

get_pdi_value /Root/Pages/Count total number of pages in the imported document
get_pdi_parameter filename name of the PDF file; if the file has been opened from memory the

dummy names »(open_pdi_callback)« or »(open_pdi_mem)« will
be returned.

get_pdi_parameter /Info/<key> Retrieves the string value of a key in the document info dictionary,
e.g., /Info/Title. No conversion will be applied to the string. If the
key cannot be found in the document an empty string will be
returned. However, if pdiwarning is set to true, an exception will
be thrown for a key that couldn’t be found.

get_pdi_parameter pdfx Retrieves the PDF/X conformance level of the imported document.
The result is one of »PDF/X-1:2001« , »PDF/X-1a:2001«, »PDF/X-
3:2002«, »none«, or a string designating a later PDF/X
conformance level (see Section 3.4, »PDF/X Support«, page 61).

get_pdi_value version PDF version number multiplied by 10, e.g. 13 for PDF 1.3
set_parameter pdiwarning This parameter can be used to obtain more detailed information

about why a PDF or page couldn’t be opened. Default: false
true Raise a nonfatal exception when the PDI function

fails. The information string supplied with the exception
may be useful in debugging import-related problems.

false Do not raise an exception when the PDI function fails.
Instead, the function returns -1 (in PHP: 0) on error.

set_parameter pdiusebox This parameter determines which of the Box entries of a page will
be used for determining an imported page’s size. Default: crop
media Use the MediaBox (which is always present)
crop Use the CropBox if present, else the MediaBox
bleed Use the BleedBox if present, else the CropBox
trim Use the TrimBox if present, else the CropBox
art Use the ArtBox if present, else the CropBox
The pdiusebox parameter must be set before calling PDF_open_
pdi_page().

set_pdi_parameter
get_pdi_value

vdp/Blocks/
<block>/<property>

has/vdp/Blocks/
<block>/<property>

Query standard and custom block properties (see Section 6.4,
»Querying Block Names and Properties«, page 128). Only available
in the PDFlib Personalization Server (PPS).

7.8 Block Filling Functions (PPS) 183

7.8 Block Filling Functions (PPS)
The PDFlib Personalization Server (PPS) offers dedicated functions for processing vari-
able data blocks of type Text, Image, and PDF. These blocks must be contained in the im-
ported PDF page, but will not be retained in the generated output. The imported page
must have been placed on the output page before using any of the block filling func-
tions. When calculating the block position on the page, the block functions will take
into account the scaling options provided to the most recent call to PDF_fit_pdi_page()
with the respective PDF page handle. If only block processing is desired without actually
placing the contents of the page on the output page (i.e., the imported page is only used
as a container of blocks) the blind option of PDF_fit_pdi_page() can be used.

Note The block processing functions discussed in this section require the PDFlib Personalization
Server (PPS). The PDFlib Block plugin for Adobe Acrobat is required for creating blocks in PDF
templates.

int PDF_fill_textblock(PDF *p,
int page, const char *blockname, const char *text, int len, const char *optlist)

Fill a text block with variable data according to its properties.

page A valid PDF page handle for a page containing blocks.

blockname The name of the block.

text The text to be filled into the block, or an empty string if the default text is to be
used.

len (C binding only) Length of text (in bytes) for strings which may contain null char-
acters. If len = 0 a null-terminated string must be provided.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying filling de-
tails according to Table 7.29.

Returns -1 (in PHP: 0) if the named block doesn’t exist on the page, or the block requires a newer
PDFlib version for processing; 1 if the block could be processed successfully.

Details The supplied text will be formatted into the block, subject to the block’s properties. If
text is empty the function will use the block’s default text if available, and silently re-
turn otherwise. This may be useful to take advantage of other block properties, such as
fill or stroke color.

If the PDF document is found to be corrupt, this function will either throw an excep-
tion or return -1 subject to the pdiwarning parameter or option.

Scope page, template

Note This function is only available in the PDFlib Personalization Server (PPS).

int PDF_fill_imageblock(PDF *p,
int page, const char *blockname, int image, const char *optlist)

Fill an image block with variable data according to its properties.

page A valid PDF page handle for a page containing blocks.

184 Chapter 7: PDFlib and PDI API Reference

blockname The name of the block.

image A valid image handle for the image to be filled into the block, or -1 if the default
image is to be used.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying filling de-
tails according to Table 7.29.

Returns -1 (in PHP: 0) if the named block doesn’t exist on the page, or the block requires a newer
PDFlib version for processing; 1 if the block could be processed successfully.

Details The image referred to by the supplied image handle will be placed in the block, subject
to the block’s properties. If image is -1 (in PHP: 0) the function will use the block’s default
image if available, and silently return otherwise.

If the PDF document is found to be corrupt, this function will either throw an excep-
tion or return -1 subject to the pdiwarning parameter or option.

Scope page, template

Note This function is only available in the PDFlib Personalization Server (PPS).

int PDF_fill_pdfblock(PDF *p,
int page, const char *blockname, int contents, const char *optlist)

Fill a PDF block with variable data according to its properties.

page A valid PDF page handle for a page containing blocks.

blockname The name of the block.

contents A valid PDF page handle for the PDF page to be filled into the block, or -1 if the
default PDF page is to be used.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying filling de-
tails according to Table 7.29.

Returns -1 (in PHP: 0) if the named block doesn’t exist on the page, or the block requires a newer
PDFlib version for processing;1 if the block could be processed successfully.

Details The PDF page referred to by the supplied page handle contents will be placed in the
block, subject to the block’s properties. If contents is -1 (in PHP: 0) the function will use
the block’s default PDF page if available, and silently return otherwise.

If the PDF document is found to be corrupt, this function will either throw an excep-
tion or return -1 subject to the pdiwarning parameter or option.

Scope page, template

Note This function is only available in the PDFlib Personalization Server (PPS).

7.8 Block Filling Functions (PPS) 185

Table 7.29 Options for the PDF_fill_*block() functions

key type explanation
embedding boolean (Only for PDF_fill_textblock()) The embedding option for the font.
encoding string (Required for PDF_fill_textblock() unless the defaulttext property is used)

Encoding for the font as required by PDF_load_font(). Default: auto.
pdiwarning boolean Specifies whether or not this function will throw an exception in case of an

error in the PDF page containing the block or the page to be used as block
contents. Default is the value of the pdiwarning parameter (see Table
7.28).

textformat string (Only for PDF_fill_textblock() unless the defaulttext property is used) The
format used to interpret the supplied text (see Section 4.5.2, »Unicode Text
Formats«, page 84). Default: auto

186 Chapter 7: PDFlib and PDI API Reference

7.9 Hypertext Functions
Strings for hypertext functions may contain 8-bit-encoded text or Unicode. The string
will be converted according to the hypertextencoding parameter unless it contains Uni-
code.

Table 7.30 lists relevant parameters and values for this section.

7.9.1 Document Open Action and Open Mode
Table 7.31 lists relevant parameters and values for this section.

7.9.2 Viewer Preferences
Table 7.32 lists relevant parameters and values for this section.

Table 7.30 Parameters for hypertext functions (see Section 7.2.3, »Parameter Handling«, page 138)

function key explanation
set_parameter
get_parameter

hypertextencoding Specifies the encoding in which the hypertext functions will expect the
client-supplied strings (see Section 4.5.3, »Unicode for Hypertext
Elements«, page 85). Default: auto. Scope: any.

set_parameter
get_parameter

hypertextformat Set the format in which the hypertext functions will expect the client-
supplied strings. Possible values are bytes, utf8, utf16, utf16le, utf16be, and
auto . Default: auto. Scope: any.

set_parameter usercoordinates If false, coordinates for hypertext rectangles will be expected in the de-
fault coordinate system (see Section 3.2.1, »Coordinate Systems«, page 47);
otherwise the current user coordinate system will be used. Default: false.
Scope: any.

Table 7.31 Parameters for document open action and open mode (see Section 7.2.3, »Parameter Handling«, page
138). Scope: document.

function key explanation
set_parameter openaction Set the open action, i.e., the page number and zoom factor which will be

visible upon opening the document. The value is an option list according
to Table 7.39. Default: »type fitwindow«.

set_parameter openmode Set the appearance when the document is opened.Default: bookmarks if
the document contains any bookmarks, and otherwise none.
none Neither bookmarks nor thumbnails are visible
bookmarks Open the document with bookmarks visible.
thumbnails Open document with thumbnails visible
fullscreen Open in fullscreen mode (does not work in the browser).

Table 7.32 Parameters for viewer preferences (see Section 7.2.3, »Parameter Handling«, page 138). Scope : document

function key explanation
set_parameter hidetoolbar1 Boolean specifying whether to hide Acrobat’s tool bar . Default: false.
set_parameter hidemenubar Boolean specifying whether to hide Acrobat’s menu bar. Default: false.
set_parameter hidewindowui Boolean specifying whether to hide Acrobat’s window controls. Default:

false.
set_parameter fitwindow Boolean specifying whether to resize the document’s window to the size of

the first page. Default false.
set_parameter centerwindow Boolean specifying whether to position the document’s window in the

center of the screen. Default: false.

7.9 Hypertext Functions 187

7.9.3 Bookmarks
Table 7.33 lists relevant parameters for this section.

Note Adding bookmarks sets the open mode (see Section 7.9.1, »Document Open Action and Open
Mode«, page 186) to bookmarks unless another mode has explicitly been set.

int PDF_add_bookmark(PDF *p, const char *text, int parent, int open)
int PDF_add_bookmark2(PDF *p, const char *text, int len, int parent, int open)

Add a nested bookmark under parent, or a new top-level bookmark.

text Contains the text of the bookmark. It may contain Unicode. The maximum
length of text is 255 single-byte characters (8-bit encodings), or 126 Unicode characters.
However, a practical limit of 32 characters for text is advised.

len (Only for PDF_add_bookmark2(), and only for the C binding.) Length of text (in
bytes) for strings which may contain null characters. If len = 0 a null-terminated string
must be provided.

parent If parent contains a valid bookmark handle returned by a previous call to PDF_
add_bookmark(), a new bookmark will be generated which is a subordinate of the given

set_parameter displaydoctitle Boolean specifying whether to display the Title document info field in
Acrobat’s title bar (true) or the file name (false). Default: false.

set_parameter nonfullscreen-
pagemode

Specifies how to display the document on exiting full-screen mode (only
relevant if the openmode parameter is set to fullscreen). Default: usenone.
useoutlines display page and document outline (bookmarks)
usethumbs display page and thumbnails
usenone neither document outline nor thumbnails, only page

set_parameter direction The reading order of the document. Default l2r.
l2r Left to right
r2l Right to left (including vertical writing systems)
This parameter affects the scroll ordering in double-page view.

set_parameter viewarea
viewclip
printarea
printclip

The value of the page boundary box representing the area of a page to be
displayed or clipped when viewing the document on screen or printing it.
Acrobat ignores this setting. Default crop:
art Use the ArtBox
bleed Use the BleedBox
crop Use the CropBox
media Use the MediaBox
trim Use the TrimBox

1. Acrobat ignores this setting when viewing PDFs in a browser.

Table 7.33 Parameters for bookmarks (see Section 7.2.3, »Parameter Handling«, page 138)

function key explanation
set_parameter bookmark-

dest
Set the the page number and zoom factor for subsequently generated bookmarks.
The value is an option list according to Table 7.39. This parameter can be changed
an arbitrary number of times. Default: »type fitwindow«.

Table 7.32 Parameters for viewer preferences (see Section 7.2.3, »Parameter Handling«, page 138). Scope : document

function key explanation

188 Chapter 7: PDFlib and PDI API Reference

parent. In this way, arbitrarily nested bookmarks can be generated. If parent = 0 a new
top-level bookmark will be generated.

open If 0, child bookmarks will not be visible. If open = 1, all children will be folded out.

Returns An identifier for the bookmark just generated. This identifier may be used as the parent
parameter in subsequent calls.

Details This function adds a PDF bookmark with the supplied text. The bookmark target can be
controlled with the bookmarkdest parameter (see Table 7.33). If the page option in the
bookmarkdest parameter has been set to 0 the bookmark will point to the current page,
and to the specified page number otherwise.

Scope page

Params openmode, bookmarkdest

7.9.4 Document Information Fields

void PDF_set_info(PDF *p, const char *key, const char *value)
void PDF_set_info2(PDF *p, const char *key, const char *value, int len)

Fill document information field key with value.

key The name of the document info field, which may be any of the standard names, or
an arbitrary custom name (see Table 7.34). There is no limit for the number of custom
fields. Regarding the use and semantics of custom document information fields, PDFlib
users are encouraged to take a look at the Dublin Core Metadata element set.1

value The string to which the key parameter will be set. It may contain Unicode. Acro-
bat imposes a maximum length of value of 255 bytes.

len (Only for PDF_set_info2(), and only for the C binding.) Length of value (in bytes) for
strings which may contain null characters. If len = 0 a null-terminated string must be
provided.

Scope object, document, page

1. See http://dublincore.org

Table 7.34 Values for the document information field key

key explanation
Subject Subject of the document
Title Title of the document
Creator Software used to create the document (as opposed to the Producer of the PDF

output, which is always PDFlib)
Author Author of the document
Keywords Keywords describing the contents of the document
Trapped Indicates whether trapping has been applied to the document. Allowed values are

True, False, and Unknown.
any name other than
CreationDate, Producer, and
ModDate

User-defined field. PDFlib supports an arbitrary number of fields.

http://dublincore.org

7.9 Hypertext Functions 189

7.9.5 Page Transitions
PDF files may specify a page transition in order to achieve special effects which may be
useful for presentations or »slide shows«. In Acrobat, these effects cannot be set docu-
ment-specific or on a page-by-page basis, but only for the full screen mode. PDFlib, how-
ever, allows setting the page transition mode and duration for each page separately. Ta-
ble 7.35 lists relevant parameters and values for this section.

7.9.6 File Attachments

void PDF_attach_file(PDF *p, float llx, float lly, float urx, float ury, const char *filename,
const char *description, const char *author, const char *mimetype, const char *icon)

void PDF_attach_file2(PDF *p, float llx, float lly, float urx, float ury, const char *filename,
int reserved, const char *description, int desc_len, const char *author, int author_len,
const char *mimetype, const char *icon)

Add a file attachment annotation.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the an-
notation rectangle in default coordinates (if the usercoordinates parameter is false) or
user coordinates (if it is true). Acrobat will align the upper left corner of the icon at the
upper left corner of the specified rectangle.

filename The name of the file which will be attached to the PDF document. If the file
cannot be opened PDFlib will throw an exception.

reserved (C language binding only.) Reserved, must be 0.

description A string with some explanation of the attachment. It may contain Uni-
code.

desc_len (Only for PDF_attach_file2(), and only for the C binding.) Length of description
(in bytes) for strings which may contain null characters. If len = 0 a null-terminated
string must be provided.

author A string with the author’s name or function. It may contain Unicode.

Table 7.35 Parameters and values for page transitions (see Section 7.2.3, »Parameter Handling«, page 138)

function key explanation
set_parameter transition Set the page transition effect for the current and subsequent pages until the

transition is changed again. The transition types below are supported. type may
also be empty to reset the transition effect. Default is replace. Scope: any.
split Two lines sweeping across the screen reveal the page
blinds Multiple lines sweeping across the screen reveal the page
box A box reveals the page
wipe A single line sweeping across the screen reveals the page
dissolve The old page dissolves to reveal the page
glitter The dissolve effect moves from one screen edge to another
replace The old page is simply replaced by the new page (default)

set_value duration Set the page display duration in seconds for the current page. Default is one
second. Scope: any

190 Chapter 7: PDFlib and PDI API Reference

author_len (Only for PDF_attach_file2(), and only for the C binding.) Length of author
(in bytes) for strings which may contain null characters. If len = 0 a null-terminated
string must be provided.

mimetype The MIME type of the file. It will be used by Acrobat for launching the ap-
propriate program when the file attachment annotation is activated.

icon Controls the display of the unopened file attachment in Acrobat (see Table 7.36).

Details This function adds a file attachment annotation at the specified rectangle. Acrobat
Reader is unable to deal with file attachments and will display a question mark instead.
File attachments only work in the full Acrobat software. The color of the attachment
icon can be controlled with PDF_set_border_color().

Scope page

7.9.7 Note Annotations
Note All annotation coordinates are different from the parameters of the PDF_rect() function. While

all annotation functions expect parameters for two corners directly, PDF_rect() expects the co-
ordinates of one corner, plus width and height values.

void PDF_add_note(PDF *p, float llx, float lly, float urx, float ury,
const char *contents, const char *title, const char *icon, int open)

void PDF_add_note2(PDF *p, float llx, float lly, float urx, float ury,
const char *contents, int contents_len, const char *title, const char *icon, int open)

Add a note annotation.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the
note rectangle in default coordinates (if the usercoordinates parameter is false) or user
coordinates (if it is true). Acrobat will align the upper left corner of the icon at the upper
left corner of the specified rectangle.

contents Text content of the note. It may contain Unicode. The maximum length of
contents is 65535 bytes.

contents_len (Only for PDF_add_note2(), and only for the C binding.) Length of
contents (in bytes) for strings which may contain null characters. If len = 0 a null-termi-
nated string must be provided.

title Heading text of the note. It may contain Unicode. The maximum length of title is
255 single-byte characters or 126 Unicode characters. However, a practical limit of 32
characters for title is advised.

Table 7.36 Icon names for file attachments

icon name icon appearance icon name icon appearance

graph

pushpin

paperclip tag

7.9 Hypertext Functions 191

title_len (Only for PDF_add_note2(), and only for the C binding.) Length of title (in
bytes) for strings which may contain null characters. If len = 0 a null-terminated string
must be provided.

icon Controls the display of the unopened note annotation in Acrobat (see Table 7.37).

open The annotation will be displayed in open state if open = 1, and closed if open = 0.

Details This function adds a note annotation at the specified rectangle. The color of the note
icon can be controlled with PDF_set_border_color().

Scope page

7.9.8 Link Annotations and Named Destinations
Table 7.38 lists relevant parameters for this section.

Note PDF doesn’t support links with shapes other than rectangles.

Table 7.37 Icon names for note annotations

icon name icon appearance icon name icon appearance

comment newparagraph

insert key

note help

paragraph

Table 7.38 Parameters for links (see Section 7.2.3, »Parameter Handling«, page 138)

function key explanation
set_parameter base Set the document’s base URL. This is useful when a document with relative Web

links to other documents is moved to a different location. Setting the base URL to
the »old« location makes sure that relative links will still work. Scope: page,
pattern, template, document.

set_parameter launchlink:
parameters

Set additional parameters which will be passed to an application launched via
PDF_add_launchlink(). This is only supported by Acrobat on Windows. Multiple
parameters can be separated with a space character, but individual parameters
must not contain any space characters. Scope: any1

1. The next call to PDF_add_launchlink() will use any of the launchlink parameters which have been set, and reset it after use.
For subsequent function calls the parameters must be set again.

set_parameter launchlink:
operation

Specify an operation which will be applied to a document launched via PDF_add_
launchlink(). This must be either »open« or »print«. In the latter case the launched
file must be a document (not an application). It is only supported by Acrobat on
Windows. Scope: any

set_parameter launchlink:
defaultdir

Set an additional default directory for an application launched via PDF_add_
launchlink(). This is only supported by Acrobat on Windows. Scope: any

192 Chapter 7: PDFlib and PDI API Reference

void PDF_add_pdflink(PDF *p, float llx, float lly, float urx, float ury,
const char *filename, int page, const char *optlist)

Add a file link annotation (to a PDF target).

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the link
rectangle in default coordinates (if the usercoordinates parameter is false) or user coordi-
nates (if it is true).

filename The name of the target PDF file.

page The physical page number of the target page, which must be greater than 0. This
parameter will be ignored if the page option is present in optlist.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying the destina-
tion according to Table 7.39.

Scope page

Table 7.39 Options to specify destinations for use with PDF_add_pdflink(), PDF_add_locallink(), and PDF_
add_nameddest(). The same options are also used for the openaction and bookmarkdest parameters.

option type explanation
type keyword Specifies the location of the window on the target page. Default: fitwindow:

fixed Use a fixed destination view specified by the left, top, and zoom
options. If any of these options is missing its current value will be
retained.

fitwindow Fit the complete page to the window.
fitwidth Fit the page width to the window, with the y coordinate top at the top

edge of the window.
fitheight Fit the page height to the window, with the x coordinate left at the left

edge of the window.
fitrect Fit the rectangle specified by left, bottom, right, and top to the window.
fitvisible Fit the visible contents of the page (the ArtBox) to the window.
fitvisiblewidth Fit the visible contents of the page to the window with the y

coordinate top at the top edge of the window
fitvisibleheight Fit the visible contents of the page to the window with the x

coordinateleft at the left edge of the window.
nameddest (Not for PDF_add_nameddest()) A named destination specified with

the name option.
name string (Not for PDF_add_nameddest(); required if type = nameddest, and ignored

otherwise. String designating a named destination which must be defined in the
target file. If this option is provided no other option except type must be used.
Destination names must be unique within a document.

page integer (Required unless type = nameddest, but can also be set via the page function
parameter in PDF_add_pdflink() and PDF_add_locallink() which has precedence).
The page number of the destination page (first page is 1). The page must exist in
the destination PDF. Page 0 means the current page for bookmarkdest, PDF_add_
nameddest(), PDF_add_locallink() and PDF_add_bookmark().
Default: 1 for openaction, and 0 for bookmarkdest, PDF_add_nameddest(), and
PDF_add_nameddest().

zoom float (Only for type = fixed) The zoom factor (1 means 100%) to be used to display the
page contents. If this option is missing or 0 the zoom factor which was in effect
when the link was activated will be retained.

left float (Only for type = fixed, fitheight, fitrect, or fitvisibleheight) The x coordinate of the
page which will positioned at the left edge of the window. Default: 0

7.9 Hypertext Functions 193

void PDF_add_locallink(PDF *p,
float llx, float lly, float urx, float ury, int page, const char *optlist)

Add a link annotation to a target within the current PDF file.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the link
rectangle in default coordinates (if the usercoordinates parameter is false) or user coordi-
nates (if it is true).

page The physical page number of the target page, which must be greater than 0. The
value 0 can be used for the current page. This may be a previously generated page, or a
page in the same document that will be generated later (after the current page). Howev-
er, the application must make sure that the target page will actually be generated; PD-
Flib will issue a warning message otherwise. This parameter will be ignored if the page
option is present in optlist.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying the destina-
tion according to Table 7.39.

Scope page

void PDF_add_launchlink(PDF *p, float llx, float lly, float urx, float ury, const char *filename)

Add a launch annotation (to a target of arbitrary file type).

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the link
rectangle in default coordinates (if the usercoordinates parameter is false) or user coordi-
nates (if it is true).

filename The name of the file which will be launched upon clicking the link.

Scope page

Params launchlink:parameters, launchlink:operation, launchlink:defaultdir. These parameters will be
reset to empty values after each call to this function.

right float (Only for type = fitrect) The x coordinate of the page which will positioned at the
right edge of the window. Default: 1000

bottom float (Only for type = fitrect) The y coordinate of the page which will positioned at the
bottom edge of the window. Default: 0

top float (Only for type = fixed, fitwidth, fitrect, or fitvisiblewidth) The y coordinate of the
page which will positioned at the top edge of the window. Default: 1000

fitbbox boolean (Deprecated) True is equivalent to »type fitvisible«
fitheight boolean (Deprecated) True is equivalent to »type fitheight left 0«
fitpage boolean (Deprecated) True is equivalent to »type fitwindow«
fitwidth boolean (Deprecated) True is equivalent to »type fitwidth top 10000«
retain boolean (Deprecated) True is equivalent to »type fixed« (left, top, zoom will be retained)

Table 7.39 Options to specify destinations for use with PDF_add_pdflink(), PDF_add_locallink(), and PDF_
add_nameddest(). The same options are also used for the openaction and bookmarkdest parameters.

option type explanation

194 Chapter 7: PDFlib and PDI API Reference

void PDF_add_weblink(PDF *p, float llx, float lly, float urx, float ury, const char *url)

Add a weblink annotation to a target URL on the Web.

llx, lly, urx, ury x and y coordinates of the lower left and upper right corners of the link
rectangle in default coordinates (if the usercoordinates parameter is false) or user coordi-
nates (if it is true).

url A Uniform Resource Identifier encoded in 7-bit ASCII specifying the link target. It
can point to an arbitrary (Web or local) resource.

Scope page

Params The textx/texty, currentx/currenty, and imagewidth/imageheight parameters may be
useful for retrieving positioning information for calculating the dimension of link
rectangles.

void PDF_set_border_style(PDF *p, const char *style, float width)

Set the border style for all kinds of links.

style Specifies the links border style, and must be one of solid or dashed.

width Specifies the links border width in points. If width = 0 the annotation borders
will be invisible.

Details The settings made by this function are used for all links until a new style is set. At the
beginning of a document the links border style is set to a default of a solid line with a
width of 1.

Scope document, page

void PDF_set_border_color(PDF *p, float red, float green, float blue)

Set the border color for links, notes, and file attachments (annotations).

red, green, blue The RGB color values for annotation borders (in the range 0..1).The
settings made by this function are used for all annotations until a new color is set. At
the beginning of a document the annotation border color is set to black (0, 0, 0).

Scope document, page

void PDF_set_border_dash(PDF *p, float b, float w)

Set the border dash style for all kinds of links.

b, w Specify the border dash style (see PDF_setdash()).

Details At the beginning of a document the links border dash style is set to a default of (3, 3).
However, this default will only be used when the border style is explicitly set to dashed.

Scope document, page

7.9 Hypertext Functions 195

void PDF_add_nameddest(PDF *p, const char *name, int reserved, const char *optlist)

Create a named destination on an arbitrary page in the current document.

name The name of the destination, which can be used as a target for links.

reserved (C language binding only.) Reserved, must be 0.

optlist An option list (see Section 3.1.4, »Option Lists«, page 39) specifying the destina-
tion according to Table 7.39. However, since the destination must be specified explicitly,
the nameddest option is not allowed.

Details The named destination must be specified in optlist, and may point to any page in the
current document. The provided name can be used as a target for all functions and pa-
rameters which accept destination optlists according to Table 7.39.

Scope document, page

7.9.9 Thumbnails

void PDF_add_thumbnail(PDF *p, int image)

Add an existing image as thumbnail for the current page.

image A valid image handle retrieved with PDF_load_image().

Details This function adds the supplied image as thumbnail image for the current page. A
thumbnail image must adhere to the following restrictions:
> The image must be no larger than 106 x 106 pixels.
> The image must use the grayscale, RGB, or indexed RGB color space.
> Multi-strip TIFF images can not be used as thumbnails because thumbnails must be

constructed from a single PDF image object, and multi-strip TIFF images result in
multiple PDF image objects (see Section 5.1.2, »Supported Image File Formats«, page
102).

This function doesn’t generate thumbnail images for pages, but only offers a hook for
adding existing images as thumbnails. The actual thumbnail images must be generated
by the client or some other application. The client must ensure that color, height/width
ratio, and actual contents of a thumbnail match the corresponding page contents.

Since Acrobat 5 generates thumbnails on the fly (though not in the Browser), and
thumbnails increase the overall file size of the generated PDF, it is recommended not to
add thumbnails, but rely on client-side thumbnail generation instead.

Scope page; must only be called once per page. Not all pages need to have thumbnails attached
to them.

Params openmode

196 Chapter 7: PDFlib and PDI API Reference

197

8 References
[1] Adobe Systems Incorporated: PDF Reference, Third Edition: Version 1.4. Published by
Addison-Wesley 2001, ISBN 0-201-75839-3; also available as PDF from
http://partners.adobe.com/asn/developer/technotes.html

[2] Adobe Systems Incorporated: PostScript Language Reference Manual, Third Edition.
Published by Addison-Wesley 1999, ISBN 0-201-37922-8; also available as PDF from
http://partners.adobe.com/asn/developer/technotes.html

[3] The following book by the principal author of PDFlib is currently only available in
German. It discusses a variety of PostScript, PDF and font-related topics:

Thomas Merz, Olaf Drümmer: Die PostScript- & PDF-Bibel.
Zweite Auflage. ISBN 3-935320-01-9, PDFlib Edition 2002
PDFlib GmbH, 80331 München, Tal 40, fax +49 • 89 • 29 16 46 86
http://www.pdflib.com, Order by email via books@pdflib.com

http://partners.adobe.com/asn/developer/technotes.html
http://partners.adobe.com/asn/developer/technotes.html
http://www.pdflib.com
mailto:books@pdflib.com

198 Chapter 8: References

A PDFlib Quick Reference 199

A PDFlib Quick Reference
General Functions

Font Functions

Function prototype page
void PDF_boot(void) 133
void PDF_shutdown(void) 133
PDFlib_api * PDF_boot_dll(void) 133
void PDF_shutdown_dll(PDFlib_api *PDFlib) 133
PDF *PDF_new(void) 133
PDF *PDF_new2(void (*errorhandler)(PDF *p, int errortype, const char *msg), void* (*allocproc)(PDF *p, size_t size,
const char *caller), void* (*reallocproc)(PDF *p, void *mem, size_t size, const char *caller), void (*freeproc)(PDF *p,
void *mem), void *opaque) 134
void PDF_delete(PDF *p) 135
int PDF_open_file(PDF *p, const char *filename) 135
int PDF_open_fp(PDF *p, FILE *fp) 136
void PDF_open_mem(PDF *p, size_t (*writeproc)(PDF *p, void *data, size_t size)) 136
const char * PDF_get_buffer(PDF *p, long *size) 137
void PDF_close(PDF *p) 137
void PDF_begin_page(PDF *p, float width, float height) 138
void PDF_end_page(PDF *p) 138
float PDF_get_value(PDF *p, const char *key, float modifier) 138
void PDF_set_value(PDF *p, const char *key, float value) 139
const char * PDF_get_parameter(PDF *p, const char *key, float modifier) 139
void PDF_set_parameter(PDF *p, const char *key, const char *value) 139
void PDF_create_pvf(PDF *p, const char *filename, int reserved, const void *data, size_t size, const char *optlist)
139
int PDF_delete_pvf(PDF *p, const char *filename, int reserved) 140
int PDF_get_errnum(PDF *p) 141
const char *PDF_get_errmsg(PDF *p) 141
const char *PDF_get_apiname(PDF *p) 141
void *PDF_get_opaque(PDF *p) 141

Function prototype page
int PDF_load_font(PDF *p, const char *fontname, int reserved, const char *encoding, const char *optlist) 143
void PDF_setfont(PDF *p, int font, float fontsize) 145
void PDF_begin_font(PDF *p, char *fontname, int reserved, float a, float b, float c, float d, float e, float f, const
char *optlist) 145
void PDF_end_font(PDF *p) 146
void PDF_begin_glyph(PDF *p, char *glyphname, float wx, float llx, float lly, float urx, float ury) 146
void PDF_end_glyph(PDF *p) 146
void PDF_encoding_set_char(PDF *p, const char *encoding, int slot, const char *glyphname, int uv) 146

200 Chapter A: PDFlib Quick Reference

Text Output Functions

Graphics Functions

Function prototype page
void PDF_set_text_pos(PDF *p, float x, float y) 147
void PDF_show(PDF *p, const char *text) 147
void PDF_show_xy(PDF *p, const char *text, float x, float y) 149
void PDF_continue_text(PDF *p, const char *text) 149
void PDF_fit_textline(PDF *p, const char *text, int len, float x, float y, const char *optlist); 150
int PDF_show_boxed(PDF *p, const char *text, float x, float y, float width, float height, const char *mode, const
char *feature) 152
float PDF_stringwidth(PDF *p, const char *text, int font, float fontsize) 153

Function prototype page
void PDF_setdash(PDF *p, float b, float w) 154
void PDF_setdashpattern(PDF *p, const char *optlist) 154
void PDF_setflat(PDF *p, float flatness) 154
void PDF_setlinejoin(PDF *p, int linejoin) 155
void PDF_setlinecap(PDF *p, int linecap) 155
void PDF_setmiterlimit(PDF *p, float miter) 156
void PDF_setlinewidth(PDF *p, float width) 156
void PDF_initgraphics(PDF *p) 156
void PDF_save(PDF *p) 156
void PDF_restore(PDF *p) 157
void PDF_translate(PDF *p, float tx, float ty) 157
void PDF_scale(PDF *p, float sx, float sy) 157
void PDF_skew(PDF *p, float alpha, float beta) 158
void PDF_concat(PDF *p, float a, float b, float c, float d, float e, float f) 158
void PDF_setmatrix(PDF *p, float a, float b, float c, float d, float e, float f) 159
int PDF_create_gstate(PDF *p, const char *optlist) 159
void PDF_set_gstate(PDF *p, int gstate) 160
void PDF_moveto(PDF *p, float x, float y) 160
void PDF_lineto(PDF *p, float x, float y) 161
void PDF_curveto(PDF *p, float x1, float y1, float x2, float y2, float x3, float y3) 161
void PDF_circle(PDF *p, float x, float y, float r) 161
void PDF_arc(PDF *p, float x, float y, float r, float alpha, float beta) 161
void PDF_arcn(PDF *p, float x, float y, float r, float alpha, float beta) 162
void PDF_rect(PDF *p, float x, float y, float width, float height) 162
void PDF_closepath(PDF *p) 162
void PDF_stroke(PDF *p) 163
void PDF_closepath_stroke(PDF *p) 163
void PDF_fill(PDF *p) 163
void PDF_fill_stroke(PDF *p) 164
void PDF_closepath_fill_stroke(PDF *p) 164

A PDFlib Quick Reference 201

Color Functions

Image Functions

PDF Import (PDI) Functions

void PDF_clip(PDF *p) 164
void PDF_endpath(PDF *p) 164

Function prototype page
void PDF_setcolor(PDF *p, const char *fstype, const char *colorspace, float c1, float c2, float c3, float c4) 165
int PDF_makespotcolor(PDF *p, const char *spotname, int reserved) 166
int PDF_load_iccprofile(PDF *p, const char *profilename, int reserved, const char *optlist) 166
int PDF_begin_pattern(PDF *p, float width, float height, float xstep, float ystep, int painttype) 168
void PDF_end_pattern(PDF *p) 169
int PDF_shading_pattern(PDF *p, int shading, const char *optlist) 169
void PDF_shfill(PDF *p, int shading) 169
int PDF_shading(PDF *p, const char *shtype, float x0, float y0, float x1, float y1, float c1, float c2, float c3, float c4,
const char *optlist) 169

Function prototype page
int PDF_load_image(PDF *p, const char *imagetype, const char *filename, int reserved, const char *optlist) 171
void PDF_close_image(PDF *p, int image) 172
void PDF_fit_image(PDF *p, int im, float x, float y, const char *optlist) 174
int PDF_begin_template(PDF *p, float width, float height) 176
void PDF_end_template(PDF *p) 176

Function prototype page
int PDF_open_pdi_callback(PDF *p, void *opaque, size_t filesize, size_t (*readproc)(void *opaque, void *buffer,
size_t size), int (*seekproc)(void *opaque, long offset), const char *optlist) 177
int PDF_open_pdi_callback(PDF *p, void *opaque, size_t filesize, size_t (*readproc)(void *opaque, void *buffer,
size_t size), int (*seekproc)(void *opaque, long offset), const char *optlist) 177
void PDF_close_pdi(PDF *p, int doc) 178
int PDF_process_pdi(PDF *p, int doc, int page, const char* optlist) 180
void PDF_close_pdi_page(PDF *p, int page) 179
void PDF_fit_pdi_page(PDF *p, int page, float x, float y, const char *optlist) 179
int PDF_process_pdi(PDF *p, int doc, int page, const char* optlist) 180
float PDF_get_pdi_value(PDF *p, const char *key, int doc, int page, int reserved) 181
const char * PDF_get_pdi_parameter(PDF *p, const char *key, int doc, int page, int reserved, int *len) 181

Function prototype page

202 Chapter A: PDFlib Quick Reference

Block Filling Functions

Hypertext Functions

Function prototype page
int PDF_fill_textblock(PDF *p, int page, const char *blockname, const char *text, int len, const char *optlist) 183
int PDF_fill_imageblock(PDF *p, int page, const char *blockname, int image, const char *optlist) 183
int PDF_fill_pdfblock(PDF *p, int page, const char *blockname, int contents, const char *optlist) 184

Function prototype page
int PDF_add_bookmark(PDF *p, const char *text, int parent, int open) 187
void PDF_set_info(PDF *p, const char *key, const char *value) 188
void PDF_attach_file(PDF *p, float llx, float lly, float urx, float ury, const char *filename, const char *description,
const char *author, const char *mimetype, const char *icon) 189
void PDF_add_note(PDF *p, float llx, float lly, float urx, float ury, const char *contents, const char *title, const char
*icon, int open) 190
void PDF_add_pdflink(PDF *p, float llx, float lly, float urx, float ury, const char *filename, int page, const char
*optlist) 192
void PDF_add_locallink(PDF *p, float llx, float lly, float urx, float ury, int page, const char *optlist) 193
void PDF_add_launchlink(PDF *p, float llx, float lly, float urx, float ury, const char *filename) 193
void PDF_add_weblink(PDF *p, float llx, float lly, float urx, float ury, const char *url) 194
void PDF_set_border_style(PDF *p, const char *style, float width) 194
void PDF_set_border_color(PDF *p, float red, float green, float blue) 194
void PDF_set_border_dash(PDF *p, float b, float w) 194
void PDF_add_nameddest(PDF *p, const char *name, int reserved, const char *optlist) 195
void PDF_add_thumbnail(PDF *p, int image) 195

A PDFlib Quick Reference 203

Parameters and Values
category function keys
setup set_parameter resourcefile, SearchPath, compatibility, pdfx, license, licensefile, warning,

openwarning, asciifile, flush
set_value compress

versioning get_value major, minor, revision
get_parameter version

page set_value pagewidth, pageheight
CropBox, BleedBox, ArtBox, TrimBox: these must be followed by a slash ’/’
character and one of llx, lly, urx, ury, for example: CropBox/llx

get_value pagewidth, pageheight
font set_parameter FontAFM, FontPFM, FontOutline, Encoding, fontwarning, kerning, autosubsetting,

autocidfont, textformat, unicodemap
get_parameter fontname, fontencoding, textformat
set_value subsetlimit, subsetminsize
get_value font, fontsize, capheight, ascender, descender, fontmaxcode

text set_value leading, textrise, horizscaling, textrendering, charspacing, wordspacing
get_value leading, textrise, horizscaling, textrendering, charspacing, wordspacing, textx,

texty
set_parameter underline, overline, strikeout, kerning
get_parameter underline, overline, strikeout

graphics set_parameter fillrule, topdown
get_parameter scope
get_value currentx, currenty

color set_parameter iccwarning, honoriccprofile, ICCProfile, StandardOutputIntent, renderingintent
set_value defaultgray, defaultrgb, defaultcmyk, setcolor:iccprofilegray,

setcolor:iccprofilergb, setcolor:iccprofilecmyk
get_value image:iccprofile, icccomponents

image get_value imagewidth, imageheight, resx, resy
set_parameter imagewarning

PDI get_parameter pdi
set_parameter pdiwarning, pdiusebox
get_pdi_value /Root/Pages/Count, /Rotate, version, width, height

CropBox, BleedBox, ArtBox, TrimBox: these must be followed by a slash ’/’
character and one of llx, lly, urx, ury, for example: CropBox/llx

get_pdi_
parameter

filename, /Info/<key>, vdp/Blocks/<blockname>/<propertyname>,
has/vdp/Blocks/<blockname>/<propertyname>

hypertext set_parameter openaction, openmode, bookmarkdest, transition, base, hypertextformat,
hypertextencoding, usercoordinates, hidetoolbar, hidemenubar, hidewindowui,
fitwindow, centerwindow, displaydoctitle, nonfullscreenpagemode, direction,
viewarea, viewclip, printarea, printclip, launchlink:parameters,
launchlink:operation, launchlink:defaultdir,

get_parameter hypertextformat
set_value duration

security set_parameter userpassword, masterpassword, permissions

204 Chapter B: Revision History

B Revision History
Revision history of this manual

Date Changes
March 26, 2003 > Major changes and rewrite for PDFlib 5.0.0
June 14, 2002 > Minor changes for PDFlib 4.0.3 and extensions for the .NET binding
January 26, 2002 > Minor changes for PDFlib 4.0.2 and extensions for the IBM eServer edition
May 17, 2001 > Minor changes for PDFlib 4.0.1
April 1, 2001 > Documents PDI and other features of PDFlib 4.0.0
February 5, 2001 > Documents the template and CMYK features in PDFlib 3.5.0
December 22, 2000 > ColdFusion documentation and additions for PDFlib 3.03; separate COM edition

of the manual
August 8, 2000 > Delphi documentation and minor additions for PDFlib 3.02
July 1, 2000 > Additions and clarifications for PDFlib 3.01
Feb. 20, 2000 > Changes for PDFlib 3.0
Aug. 2, 1999 > Minor changes and additions for PDFlib 2.01
June 29, 1999 > Separate sections for the individual language bindings

> Extensions for PDFlib 2.0
Feb. 1, 1999 > Minor changes for PDFlib 1.0 (not publicly released)
Aug. 10, 1998 > Extensions for PDFlib 0.7 (only for a single customer)
July 8, 1998 > First attempt at describing PDFlib scripting support in PDFlib 0.6
Feb. 25, 1998 > Slightly expanded the manual to cover PDFlib 0.5
Sept. 22, 1997 > First public release of PDFlib 0.4 and this manual

Index 205

Index

0-9
16-bit encodings 83
8-bit encodings 77

A
Acrobat plugin for creating blocks 120
Adobe Font Metrics (AFM) 70
AFM (Adobe Font Metrics) 70
All spot color name 166
alpha channel 104
alphaisshape gstate option 159
annotations 85, 190
antialias option 170
API (Application Programming Interface)

reference 131
ArtBox 50, 135, 181, 182
AS/400 46
ascender 88
ascender parameter 142
asciifile parameter 46, 132
Asian FontPack 93
attachments 85, 189
Author field 188
auto text format 86
autocidfont parameter 75, 76, 142
autosubsetting parameter 76, 142
availability of PDFlib 17

B
base parameter 191
baseline compression 102
Bézier curve 161
bindings 17
BleedBox 50, 135, 181, 182
blendmode gstate option 159
blind mode 91, 152
block properties 118
blocks 117

plugin 120
BMP 104
bookmarkdest parameter 187
bookmarks 187

hide 186
builtin encoding 80
byte order mark (BOM) 84
byte text format 87
bytes: see hypertextformat

C
C binding 18

memory management 21
C++ binding 22

memory management 23
capheight 88
capheight parameter 142
categories of resources 42
CCITT 104
CCSID 77, 79
centerwindow parameter 186
CFF (Compact Font Format) 67
character metrics 88
character names 71
character sets 77
characters per inch 89
charspacing parameter 148
Chinese 93, 95
CIE L*a*b* color space 59
CJK (Chinese, Japanese, Korean)

custom fonts 96
standard fonts 93

clip 51
CMaps 93, 95
CMYK color 53
Cobol binding 18
code page

Microsoft Windows 1250-1258 78
Unicode-based 83

color 53
color functions 165
COM (Component Object Model) binding 18
commercial license 10
compatibility parameter 132
compress parameter 132
coordinate range 50
coordinate system 47

metric 48
top-down 48

copyoutputintent option 63
core fonts 74
CPI (characters per inch) 89
Creator field 188
CropBox 50, 135, 181, 182
current point 51
currentx and currenty parameter 88, 160
custom encoding 79

206 Index

D
dash pattern 154
default coordinate system 47
default zoom 186, 187
defaultgray/rgb/cmyk parameter 168
defaultgray/rgb/cmyk parameters 59
demo stamp 9
descender 88
descender parameter 142
descriptor 74
direction parameter 187
displaydoctitle parameter 187
document and page functions 135
document information fields 85, 188
document open action 186
downsampling 102
dpi calculations 102
Dublin Core 188
duration parameter 189

E
EBCDIC 46
ebcdic encoding 78
EJB (Enterprise Java Beans) 25
embedded systems 17
embedding fonts 74
encoding 77

CJK 96
custom 79
fetching from the system 77
for hypertext 86

Encoding parameter 142
encryption 65
environment variable PDFLIBRESOURCE 44
error handling 38

API 134
eServer zSeries and iSeries 46
Euro character 81
evaluation stamp 9
explicit graphics state 159
explicit transparency 105
extend0 and extend1 options 170

F
features of PDFlib 13
file attachments 85, 189
filename parameter for PDI 182
fill 50
fillrule parameter 163
fitwindow parameter 186
flatness gstate option 159
flush parameter 46, 132, 136
font metrics 88
font parameter 142
font subsetting 75
FontAFM parameter 142

fontencoding parameter 142
fontmaxcode parameter 81, 142
fontname parameter 142
FontOutline parameter 142
FontPFM parameter 142
fonts

AFM files 70
Asian fontpack 93
descriptor 74
embedding 74
glyph names 71
legal aspects of embedding 75
monospaced 88
OpenType 67
PDF core set 74
PFA files 70
PFB files 70
PFM files 70
PostScript 67, 70
resource configuration 41
TrueType 67
type 1 70
Type 3 (user-defined) 72
type 3 72
Unicode support 83
user-defined (Type 3) 72

fontsize parameter 142
FontSpecific encoding 80
fontwarning parameter 39, 142
form fields: converting to blocks 123
form XObjects 51
fullscreen mode 186
function scopes 37

G
gaiji characters 68
get_buffer() 45
get_value() 138
GIF 103
glyph id addressing 81
gradients 54
graphics functions 154
graphics state

explicit 159
graphics state functions 154
grid.pdf 47
gstate 169

H
hello world example

in RPG 31
hidemenubar parameter 186
hidetoolbar parameter 186
hidewindowui parameter 186
HKS colors 56
horizontal writing mode 94
horizscaling parameter 148

Index 207

host encoding 77
host fonts 74
hypertext functions 186
hypertextencoding parameter 86, 186
hypertextformat parameter 84, 186

I
IBM eServer 46
ICC-based color 53
icccomponents parameter 168
ICCProfile parameter 168
iccwarning parameter 168
icons

for file attachments 190
for notes 191

ignoremask 106
image data, re-using 101
image file formats 102
image functions 171
image mask 104, 105
image scaling 102
image:iccprofile parameter 58, 171
imagewarning parameter 102, 171
imagewidth and imageheight parameters 171
implicit transparency 104
import functions for PDF 177
inch 47
in-core PDF generation 45
indexed color 53
Info keys in imported PDF documents 182
inline images 101
invisible text 90
iSeries 46
ISO 10646 83
ISO 15930 61
ISO 8859-1 85
ISO 8859-2 to -15 78

J
Japanese 93, 95
Java application servers 25
Java binding 23

EJB 25
javadoc 24
package 24
servlet 25

JFIF 102
JPEG 102

K
Kerning 89
kerning parameter 89, 142, 148
Keywords field 188
Korean 93, 95

L
landscape mode 138
language bindings: see bindings
Latin 1 encoding 85
launchlink:defaultdir parameter 191
launchlink:operation parameter 191
launchlink:parameters parameter 191
leading 88
leading parameter 148
license parameter 132
licensing PDFlib and PDI 9
line spacing 88
linecap gstate option 159
linejoin gstate option 159
linewidth gstate option 159
links 191
LWFN (LaserWriter Font) 70
LZW compression 103

M
Mac OS

UPR configuration 42
macroman encoding 77, 78
macroman_euro encoding 81
major parameter 132
makepsres utility 42
mask 105
masked 105
masking images 104
masterpassword parameter 66, 132
MediaBox 50
memory management

API 134
in C 21
in C++ 23

memory, generating PDF documents in 45
metadata 188
metric coordinates 48
metrics 88
millimeters 47
minor parameter 132
mirroring 158
miterlimit gstate option 159
monospaced fonts 88
multi-page image files 107

N
N option 170
nagger 9
.NET binding 26
None spot color name 166
nonfullscreenpagemode parameter 187
note annotations 85, 190

O
opacityfill gstate option 159

208 Index

opacitystroke gstate option 159
openaction parameter 186
openmode parameter 186
OpenType fonts 67
openwarning parameter 135
outline text 90
output accuracy 50
output condition for PDF/X 61
output intent for PDF/X 61
overline parameter 90, 148
overprintfill gstate option 159
overprintmode gstate option 159
overprintstroke gstate option 159

P
page 107
page descriptions 47
page formats 49
page size formats 49

limitations in Acrobat 49
page transitions 189
pagewidth and pageheight parameters 135
PANTONE colors 55
parameter handling functions 138
passwords 65
path 50

painting and clipping 163
patterns 53
PDF import functions 177
PDF import library (PDI) 108, 177
PDF/X 61

importing PDF documents 63
output intent 180

PDF_add_bookmark() 187
PDF_add_bookmark2() 187
PDF_add_launchlink() 193
PDF_add_locallink() 193
PDF_add_nameddest() 195
PDF_add_note() 190
PDF_add_note2() 190
PDF_add_pdflink() 192
PDF_add_thumbnail() 195
PDF_add_weblink() 194
PDF_arc() 161
PDF_arcn() 162
PDF_attach_file() 189
PDF_attach_file2() 189
PDF_begin_page() 138
PDF_begin_pattern 168
PDF_begin_template() 176
PDF_boot() 133
PDF_boot_dll() 133
PDF_circle() 161
PDF_clip() 164
PDF_close() 137
PDF_close_image() 172
PDF_close_pdi 178
PDF_close_pdi_page 179

PDF_closepath() 162
PDF_closepath_fill_stroke() 164
PDF_closepath_stroke() 163
PDF_concat() 158
PDF_continue_text() 149
PDF_continue_text2() 149
PDF_create_gstate() 159
PDF_create_pvf() 139
PDF_curveto() 161
PDF_delete() 135
PDF_delete_pvf() 140
PDF_encoding_set_char() 146
PDF_end_page() 138
PDF_end_pattern 169
PDF_end_template() 176
PDF_endpath() 164
PDF_fill() 163
PDF_fill_imageblock() 183
PDF_fill_pdfblock() 184
PDF_fill_stroke() 164
PDF_fill_textblock() 183
PDF_findfont() 144
PDF_fit_image() 174
PDF_fit_pdi_page 179
PDF_fit_textline() 150
PDF_get_apiname() 141
PDF_get_buffer() 45, 137
PDF_get_errmsg() 141
PDF_get_errnum() 141
PDF_get_majorversion() 133
PDF_get_minorversion() 133
PDF_get_opaque() 141
PDF_get_parameter() 139
PDF_get_pdi_parameter 181
PDF_get_pdi_value 181
PDF_get_value() 138
PDF_initgraphics() 156
PDF_lineto() 161
PDF_load_font() 143
PDF_load_iccprofile() 166
PDF_load_image() 171
PDF_makespotcolor() 166
PDF_moveto() 160
PDF_new() 133
PDF_new2() 134
PDF_open_CCITT() 176
PDF_open_file() 135
PDF_open_fp() 136
PDF_open_image() 176
PDF_open_image_file() 176
PDF_open_mem() 136
PDF_open_pdi 177
PDF_open_pdi_callback 177
PDF_open_pdi_page 178
PDF_place_image() 176
PDF_place_pdi_page 180
PDF_process_pdi 180
PDF_rect() 162

Index 209

PDF_restore() 157
PDF_rotate() 158
PDF_save() 156
PDF_scale() 157
PDF_set_border_color() 194
PDF_set_border_dash() 194
PDF_set_border_style() 194
PDF_set_gstate() 160
PDF_set_info() 188
PDF_set_info2() 188
PDF_set_parameter() 45, 139
PDF_set_text_pos() 147
PDF_set_value() 139
PDF_setcolor() 165
PDF_setdash() 154
PDF_setdashpattern() 154
PDF_setflat() 154
PDF_setfont() 145, 146
PDF_setlinecap() 155
PDF_setlinejoin() 155
PDF_setlinewidth() 156
PDF_setmatrix() 159
PDF_setmiterlimit() 156
PDF_setpolydash() 154
PDF_shading() 169
PDF_shading_pattern() 169
PDF_shfill() 169
PDF_show() 147
PDF_show_boxed() 91, 152
PDF_show_xy() 149
PDF_show_xy2() 149
PDF_show2() 147
PDF_shutdown() 133
PDF_shutdown_dll() 133
PDF_skew() 158
PDF_stringwidth() 91, 153
PDF_stringwidth2() 153
PDF_stroke() 163
PDF_translate() 157
PDFDocEncoding 85
PDFlib

features 13
program structure 37

PDFlib Personalization Server 117, 183
pdflib.upr 44
PDFLIBRESOURCE environment variable 44
pdfx parameter 132
pdfx parameter for PDI 63, 182
PDI 108, 177
pdi parameter 182
pdiusebox parameter 109, 182
pdiwarning parameter 110, 182
Perl binding 27
permissions 65
permissions parameter 66, 132
PFA (Printer Font ASCII) 70
PFB (Printer Font Binary) 70
PFM (Printer Font Metrics) 70

PHP binding 28
platforms 17
plugin for creating blocks 120
PNG 102, 105
Portable Document Format Reference Manual 197
PostScript fonts 67, 70
PostScript Language Reference Manual 197
PPS (PDFlib Personalization Server) 117, 183
prefix parameter 132
print_glyphs.ps 71
printarea parameter 187
printclip parameter 187
Printer Font ASCII (PFA) 70
Printer Font Binary (PFB) 70
Printer Font Metrics (PFM) 70
program structure 37
Python binding 30

R
r0 and r1 options 170
raster images

functions 171
raw image data 104
references 197
reflection 158
rendering intents 59
renderingintent gstate option 160
renderingintent option 59
renderingintent parameter 171
resource category 42
resourcefile parameter 44, 132
resx and resy parameter 171
RGB color 53
Rotate entry in imported PDF pages 181
rotating objects 48
RPG binding 31

S
S/390 46
scaling images 102
scope parameter 132
scopes 37
SearchPath 43
SearchPath parameter 132
security 65
separation color space 53
servlet 25
set_parameter() 139
setcolor

iccprofilegray/rgb/cmyk parameters 58
setcolor:iccprofilegray/rgb/cmyk parameter 168
setup functions 132
shadings 54
skewing 158
smooth blends 54
smoothness gstate option 160
soft mask 104

210 Index

SPIFF 103
spot color (separation color space) 53, 54
sRGB color space 58
standard output 136
standard output conditions for PDF/X 62
standard page sizes 49
StandardOutputIntent parameter 168
stdout channel 136
strikeout parameter 90, 148
stroke 50
strokeadjust gstate option 160
structure of PDFlib programs 37
Subject field 188
subpath 50
subscript 88, 148
subsetlimit parameter 76, 142
subsetminsize parameter 76, 142
superscript 88, 148
Symbol font 80
system encoding support 77

T
T1lib 70
Tcl binding 34
templates 51
text box formatting 88
text functions 142
text metrics 88
text position 88
text rendering modes 90
text variations 88
textformat parameter 84, 148
textknockout gstate option 160
textrendering parameter 90, 148
textrise parameter 148
textx and texty parameter 88, 92, 96, 148
thumbnails 186, 195
TIFF 103

multi-page 107
Title field 188
top-down coordinates 48
topdown parameter 48, 135
ToUnicode CMap 69, 83
transition parameter 189
transparency 104

problems with 106
Trapped field 188
TrimBox 50, 135, 181, 182
TrueType fonts 67
TTC (TrueType Collection) 71
TTF (TrueType font) 67
type 1 fonts 70

Type 3 (user-defined) fonts 72
type 3 fonts 72

U
U+XXXX encoding 83
underline parameter 90, 148
Unicode 83
unicodemap parameter 84, 142
units 47
UPR (Unix PostScript Resource) 41

file format 42
file searching 44

URL 194
user space 47
usercoordinates parameter 47, 186
user-defined (Type 3) fonts 72
userpassword parameter 66, 132
utf16: see hypertextformat
utf16be: see hypertextformat
utf16le: see hypertextformat
utf8: see hypertextformat

V
value: see parameter
variable data 117
Variable Data Processing with blocks 183
vdp/Block parameters for PDI 182
version parameter 132
version parameter for PDI 182
vertical writing mode 94
viewarea parameter 187
viewclip parameter 187

W
warning 49, 193
warning parameter 39, 141
weblink 194
width and height parameters 181
winansi encoding 77, 78
wordspacing parameter 148
writing modes 94

X
XObjects 51

Z
ZapfDingbats font 80
zoom factor 186, 187
zSeries 46

	Contents
	0 Applying the PDFlib License Key
	1 Introduction
	1.1 PDFlib Programming
	1.2 PDFlib Features
	1.3 Availability of Features in different Products
	1.4 Acrobat Versions and PDFlib Features

	2 PDFlib Language Bindings
	2.1 Overview
	2.2 Cobol Binding
	2.3 COM Binding
	2.4 C Binding
	2.4.1 Availability and Special Considerations for C
	2.4.2 The »Hello world« Example in C
	2.4.3 Using PDFlib as a DLL loaded at Runtime
	2.4.4 Error Handling in C
	2.4.5 Memory Management in C

	2.5 C++ Binding
	2.5.1 Availability and Special Considerations for C++
	2.5.2 The »Hello world« Example in C++
	2.5.3 Error Handling in C++
	2.5.4 Memory Management in C++

	2.6 Java Binding
	2.6.1 Installing the PDFlib Java Edition
	2.6.2 The »Hello world« Example in Java
	2.6.3 Error Handling in Java

	2.7 .NET Binding
	2.8 Perl Binding
	2.8.1 Installing the PDFlib Perl Edition
	2.8.2 The »Hello world« Example in Perl
	2.8.3 Error Handling in Perl

	2.9 PHP Binding
	2.9.1 Installing the PDFlib PHP Edition
	2.9.2 The »Hello world« Example in PHP
	2.9.3 Error Handling in PHP

	2.10 Python Binding
	2.10.1 Installing the PDFlib Python Edition
	2.10.2 The »Hello world« Example in Python
	2.10.3 Error Handling in Python

	2.11 RPG Binding
	2.11.1 Compiling and Binding RPG Programs for PDFlib
	2.11.2 The »Hello world« Example in RPG
	2.11.3 Error Handling in RPG

	2.12 Tcl Binding
	2.12.1 Installing the PDFlib Tcl Edition
	2.12.2 The »Hello world« Example in Tcl
	2.12.3 Error Handling in Tcl

	3 PDFlib Programming
	3.1 General Programming
	3.1.1 PDFlib Program Structure and Function Scopes
	3.1.2 Parameters
	3.1.3 Exception Handling
	3.1.4 Option Lists
	3.1.5 The PDFlib Virtual File System (PVF)
	3.1.6 Resource Configuration and File Searching
	3.1.7 Generating PDF Documents in Memory
	3.1.8 Using PDFlib on EBCDIC-based Platforms

	3.2 Page Descriptions
	3.2.1 Coordinate Systems
	3.2.2 Page Sizes and Coordinate Limits
	3.2.3 Paths
	3.2.4 Templates

	3.3 Working with Color
	3.3.1 Color and Color Spaces
	3.3.2 Patterns and Smooth Shadings
	3.3.3 Spot Colors
	3.3.4 Color Management and ICC Profiles
	3.3.5 Working with ICC Profiles
	3.3.6 Device-Independent CIE L*a*b* Color
	3.3.7 Rendering Intents

	3.4 PDF/X Support
	3.4.1 Generating PDF/X-conforming Output
	3.4.2 Importing PDF/X Documents with PDI

	3.5 Passwords and Permissions
	3.5.1 Strengths and Weaknesses of PDF Security Features
	3.5.2 Protecting Documents with PDFlib

	4 Text Handling
	4.1 Overview of Fonts and Encodings
	4.1.1 Supported Font Formats
	4.1.2 Encodings
	4.1.3 Support for the Unicode Standard

	4.2 Supported Font Formats
	4.2.1 PostScript Fonts
	4.2.2 TrueType and OpenType Fonts
	4.2.3 User-Defined (Type 3) Fonts

	4.3 Font Embedding and Subsetting
	4.3.1 Making Fonts available to PDFlib
	4.3.2 Font Embedding
	4.3.3 Font Subsetting

	4.4 Encoding Details
	4.4.1 8-Bit Encodings
	4.4.2 Symbol Fonts and Font-specific Encodings
	4.4.3 Glyph ID Addressing for TrueType and OpenType Fonts
	4.4.4 The Euro Glyph

	4.5 Unicode Support
	4.5.1 Unicode for Page Descriptions
	4.5.2 Unicode Text Formats
	4.5.3 Unicode for Hypertext Elements
	4.5.4 Unicode Support in PDFlib Language Bindings

	4.6 Text Metrics, Text Variations, and Box Formatting
	4.6.1 Font and Character Metrics
	4.6.2 Kerning
	4.6.3 Text Variations
	4.6.4 Box Formatting

	4.7 Chinese, Japanese, and Korean Text
	4.7.1 CJK support in Acrobat and PDF
	4.7.2 Standard CJK Fonts and CMaps
	4.7.3 Custom CJK Fonts

	4.8 Placing and Fitting Text
	4.8.1 Simple Text Placement
	4.8.1 Placing Text in a Box
	4.8.1 Aligning Text

	5 Importing and Placing Objects
	5.1 Importing Raster Images
	5.1.1 Basic Image Handling
	5.1.2 Supported Image File Formats
	5.1.3 Image Masks and Transparency
	5.1.4 Colorizing Images
	5.1.5 Multi-Page Image Files

	5.2 Importing PDF Pages with PDI (PDF Import Library)
	5.2.1 PDI Features and Applications
	5.2.2 Using PDI Functions with PDFlib
	5.2.3 Acceptable PDF Documents

	5.3 Placing Images and Imported PDF Pages
	5.3.1 Scaling, Orientation, and Rotation
	5.3.1 Adjusting the Page Size

	6 Variable Data and Blocks
	6.1 Overview of the PDFlib Block Concept
	6.1.1 Complete Separation of Document Design and Program Code
	6.1.2 Block Properties
	6.1.3 Why not use PDF Form Fields?

	6.2 Creating Variable Data Blocks
	6.2.1 Creating Blocks in Acrobat with the PDFlib Block Plugin
	6.2.2 Editing Block Properties
	6.2.3 Converting PDF Form Fields to PDFlib Blocks

	6.3 Standard Properties for automated Processing
	6.4 Querying Block Names and Properties
	6.4.1 Finding Block Names
	6.4.2 Querying Block Properties

	7 PDFlib and PDI API Reference
	7.1 Data Types and Naming Conventions
	7.2 General Functions
	7.2.1 Setup
	7.2.2 Document and Page
	7.2.3 Parameter Handling
	7.2.4 PDFlib Virtual File System (PVF) Functions
	7.2.5 Exception Handling

	7.3 Text Functions
	7.3.1 Font Handling
	7.3.2 User-defined (Type 3) Fonts
	7.3.3 Encoding Definition
	7.3.4 Text Output

	7.4 Graphics Functions
	7.4.1 Graphics State Functions
	7.4.2 Saving and Restoring Graphics States
	7.4.3 Coordinate System Transformation Functions
	7.4.4 Explicit Graphics States
	7.4.5 Path Construction
	7.4.6 Path Painting and Clipping

	7.5 Color Functions
	7.5.1 Setting Color and Color Space
	7.5.2 Patterns and Shadings

	7.6 Image and Template Functions
	7.6.1 Images
	7.6.2 Templates
	7.6.3 Deprecated Functions

	7.7 PDF Import (PDI) Functions
	7.7.1 Document and Page
	7.7.2 Other PDI Processing
	7.7.3 Parameter Handling

	7.8 Block Filling Functions (PPS)
	7.9 Hypertext Functions
	7.9.1 Document Open Action and Open Mode
	7.9.2 Viewer Preferences
	7.9.3 Bookmarks
	7.9.4 Document Information Fields
	7.9.5 Page Transitions
	7.9.6 File Attachments
	7.9.7 Note Annotations
	7.9.8 Link Annotations and Named Destinations
	7.9.9 Thumbnails

	8 References
	A PDFlib Quick Reference
	General Functions
	Font Functions
	Text Output Functions
	Graphics Functions
	Color Functions
	Image Functions
	PDF Import (PDI) Functions
	Block Filling Functions
	Hypertext Functions
	Parameters and Values

	B Revision History
	Index
	0-9
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

